cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_PseudoDi...

52 lines
1.7 KiB
TeX

\begin{ccRefConcept}{PolynomialTraits_d::PseudoDivision}
\ccDefinition
This \ccc{AdaptableFunctor} computes the {\em pseudo division}
of two polynomials $f$ and $g$.
Given $f$ and $g \neq 0$ this functor computes quotient $q$ and
remainder $r$ such that $D \cdot f = g \cdot q + r$ and $degree(r) < degree(g)$,
where $ D = leading\_coefficient(g)^{max(0, degree(f)-degree(g)+1)}$
This functor is useful if the regular division is not available,
which is the case if \ccc{PolynomialTraits_d::Coefficient_type} is not a \ccc{Field}.
Hence in general it is not possible to invert the leading coefficient of $g$.
Instead $f$ is extended by $D$ allowing integral divisions in the internal
computation.
\ccRefines
\ccc{AdaptableFunctor}\\
\ccc{CopyConstructible}\\
\ccc{DefaultConstructible}\\
\ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{fo}
\ccTypedef{typedef void result_type;}{}\ccGlue
\ccOperations
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d f,
PolynomialTraits_d::Polynomial_d g,
PolynomialTraits_d::Polynomial_d & q,
PolynomialTraits_d::Polynomial_d & r,
PolynomialTraits_d::Coefficient_type & D);}{
Computes the pseudo division with respect to the outermost variable
$x_{d-1}$.
}
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\ccRefIdfierPage{PolynomialTraits_d::PseudoDivision}\\
\ccRefIdfierPage{PolynomialTraits_d::PseudoDivisionRemainder}\\
\ccRefIdfierPage{PolynomialTraits_d::PseudoDivisionQuotient}\\
\end{ccRefConcept}