cgal/Apollonius_graph_2/include/CGAL/Parabola_2.h

314 lines
6.5 KiB
C++

// Copyright (c) 2003,2004 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Menelaos Karavelas <mkaravel@cse.nd.edu>
#ifndef CGAL_PARABOLA_2_H
#define CGAL_PARABOLA_2_H
#include <CGAL/determinant.h>
CGAL_BEGIN_NAMESPACE
template < class Gt >
class Parabola_2
{
public:
typedef typename Gt::Site_2 Site_2;
typedef typename Gt::Point_2 Point_2;
typedef typename Gt::Segment_2 Segment_2;
typedef typename Gt::Line_2 Line_2;
typedef typename Gt::FT FT;
// typedef CGAL::Point_2< Cartesian<double> > Point_2;
// typedef CGAL::Segment_2< Cartesian<double> > Segment_2;
// typedef CGAL::Line_2< Cartesian<double> > Line_2;
protected:
// static stuff
#if defined(__POWERPC__) && \
defined(__GNUC__) && (__GNUC__ == 3) && (__GNUC_MINOR__ == 4)
// hack to avoid nasty warning for G++ 3.4 on Darwin
static FT STEP()
{
return FT(2);
}
#else
static const FT& STEP()
{
static FT step_(2);
return step_;
}
#endif
inline static
FT square(const FT &x)
{
return x * x;
}
inline static
FT norm2(const Point_2& p)
{
return square(p.x()) + square(p.y());
}
inline static
FT distance2(const Point_2& p1, const Point_2& p2)
{
FT dx = p1.x()-p2.x();
FT dy = p1.y()-p2.y();
return square(dx) + square(dy);
}
inline static
FT distance(const Point_2& p1, const Point_2& p2)
{
return CGAL::sqrt( distance2(p1, p2) );
}
inline static
FT distance(const Point_2& p, const Line_2& l)
{
return ( p.x() * l.a() + p.y() * l.b() + l.c() ) /
CGAL::sqrt( square(l.a()) + square(l.b()) );
}
// instance stuff
Point_2 c;
Line_2 l;
Point_2 o;
inline
Point_2 lchain(const FT &t) const
{
std::vector< Point_2 > p = compute_points(t);
if ( right(p[0]) ) return p[1];
return p[0];
}
inline
Point_2 rchain(const FT &t) const
{
std::vector< Point_2 > p = compute_points(t);
if ( right(p[0]) ) return p[0];
return p[1];
}
std::vector< Point_2 > compute_points(const FT &d) const
{
assert(d >= 0);
FT d1 = distance(o, c) + d;
FT d2 = distance(o, l) + d;
d2 = d1;
d1 *= d1;
std::vector< Point_2 > p;
if ( l.a() == ZERO ) {
FT y = d2 * CGAL::sign(l.b()) - l.c() / l.b();
FT C = CGAL::square(y) - FT(2) * c.y() * y +
square(c.x()) + square(c.y()) - d1;
FT D = square(c.x()) - C;
D = CGAL::abs(D);
FT x1 = CGAL::sqrt(D) + c.x();
FT x2 = -CGAL::sqrt(D) + c.x();
p.push_back(Point_2(x1, y));
p.push_back(Point_2(x2, y));
return p;
}
FT A = d2 * CGAL::sqrt( CGAL::square(l.a()) +
CGAL::square(l.b()) ) - l.c();
FT B = CGAL::square(c.x()) + CGAL::square(c.y()) - d1;
FT alpha = FT(1) + CGAL::square(l.b() / l.a());
FT beta = A * l.b() / CGAL::square(l.a()) + c.y()
- c.x() * l.b() / l.a();
FT gamma = CGAL::square(A / l.a()) + B
- FT(2) * c.x() * A / l.a();
FT D = CGAL::square(beta) - alpha * gamma;
D = CGAL::abs(D);
FT y1 = (beta + CGAL::sqrt(D)) / alpha;
FT y2 = (beta - CGAL::sqrt(D)) / alpha;
FT x1 = (A - l.b() * y1) / l.a();
FT x2 = (A - l.b() * y2) / l.a();
p.push_back(Point_2(x1, y1));
p.push_back(Point_2(x2, y2));
return p;
}
bool right(const Point_2& p) const
{
return
CGAL::is_positive( det3x3_by_formula<FT>(c.x(), c.y(), FT(1),
o.x(), o.y(), FT(1),
p.x(), p.y(), FT(1)) );
}
inline
Point_2 midpoint(const Point_2& p1, const Point_2& p2) const
{
FT t1 = t(p1);
FT t2 = t(p2);
FT midt = (t1+t2)/2;
return f(midt);
}
inline
Point_2 f(FT t) const
{
if ( CGAL::is_negative(t) ) return rchain(-t);
return lchain(t);
}
inline
FT t(const Point_2 &p) const
{
FT tt = distance(p, c) - distance(c, o);
if ( right(p) ) return -tt;
return tt;
}
void compute_origin()
{
FT d = (l.a() * c.x() + l.b() * c.y() + l.c())
/ ( FT(2) * ( square(l.a()) + square(l.b()) ) );
o = Point_2(c.x() - l.a() * d, c.y() - l.b() * d);
}
public:
Parabola_2() {}
template<class ApolloniusSite>
Parabola_2(const ApolloniusSite &p, const Line_2 &l1)
{
this->c = p.point();
FT d_a = CGAL::to_double(l1.a());
FT d_b = CGAL::to_double(l1.b());
FT len = CGAL::sqrt(CGAL::square(d_a) + CGAL::square(d_b));
FT r = p.weight() * len;
this->l = Line_2(-l1.a(), -l1.b(), -l1.c() + r);
compute_origin();
}
Parabola_2(const Point_2 &p, const Line_2 &line)
{
this->c = p;
if ( line.has_on_positive_side(p) ) {
this->l = line;
} else {
this->l = line.opposite();
}
compute_origin();
}
Oriented_side
side_of_parabola(const Point_2& p) const
{
Point_2 q(CGAL::to_double(p.x()), CGAL::to_double(p.y()));
FT d = distance(q, c) - fabs(distance(q, l));
if ( d < 0 ) return ON_NEGATIVE_SIDE;
if ( d > 0 ) return ON_POSITIVE_SIDE;
return ON_ORIENTED_BOUNDARY;
}
inline Line_2 line() const
{
return l;
}
inline Point_2 center() const
{
return c;
}
template< class Stream >
void draw(Stream& W) const
{
std::vector< Point_2 > p;
std::vector< Point_2 > pleft, pright;
pleft.push_back(o);
pright.push_back(o);
for (int i = 1; i <= 100; i++) {
p = compute_points(i * i * STEP());
W << p[0];
W << p[1];
if ( p.size() > 0 ) {
if ( right(p[0]) ) {
pright.push_back(p[0]);
pleft.push_back(p[1]);
} else {
pright.push_back(p[1]);
pleft.push_back(p[0]);
}
}
}
for (unsigned int i = 0; i < pleft.size() - 1; i++) {
W << Segment_2(pleft[i], pleft[i+1]);
}
for (unsigned int i = 0; i < pright.size() - 1; i++) {
W << Segment_2(pright[i], pright[i+1]);
}
W << o;
}
};
template< class Stream, class Gt >
inline
Stream& operator<<(Stream& s, const Parabola_2<Gt> &P)
{
P.draw(s);
return s;
}
CGAL_END_NAMESPACE
#endif // CGAL_PARABOLA_2_H