cgal/Surface_reconstruction_poin.../include/CGAL/Poisson_reconstruction_func...

872 lines
28 KiB
C++

// Copyright (c) 2007-09 INRIA (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Laurent Saboret, Pierre Alliez
#ifndef CGAL_POISSON_RECONSTRUCTION_FUNCTION_H
#define CGAL_POISSON_RECONSTRUCTION_FUNCTION_H
#include <vector>
#include <deque>
#include <algorithm>
#include <cmath>
#include <CGAL/Reconstruction_triangulation_3.h>
#include <CGAL/spatial_sort.h>
#include <CGAL/taucs_solver.h>
#include <CGAL/centroid.h>
#include <CGAL/surface_reconstruction_points_assertions.h>
#include <CGAL/Memory_sizer.h>
#include <CGAL/Peak_memory_sizer.h>
#include <CGAL/poisson_refine_triangulation.h>
CGAL_BEGIN_NAMESPACE
/// Kazhdan, Bolitho and Hoppe introduced the Poisson Surface Reconstruction algorithm [Kazhdan06].
/// Given a set of 3D points with oriented normals sampled on the boundary of a 3D solid,
/// this method solves for an approximate indicator function
/// of the inferred solid, whose gradient best matches the input normals.
/// The output scalar function, represented in an adaptive octree, is then iso-contoured
/// using an adaptive marching cubes.
///
/// Poisson_reconstruction_function implements a variant of this algorithm which solves
/// for a piecewise linear function on a 3D Delaunay triangulation instead of an adaptive octree
/// the TAUCS sparse linear solver.
/// In order to get a unique solution, one vertex outside of the surface is constrained to a value of 0.0.
///
/// @heading Is Model for the Concepts:
/// Model of the 'ImplicitFunction' concept.
///
/// @heading Parameters:
/// @param Gt Geometric traits class.
/// @param ReconstructionTriangulation_3 3D Delaunay triangulation,
/// model of ReconstructionTriangulation_3 concept.
template <class Gt, class ReconstructionTriangulation_3>
class Poisson_reconstruction_function
{
// Public types
public:
typedef ReconstructionTriangulation_3 Triangulation;
typedef Gt Geom_traits; ///< Kernel's geometric traits
typedef typename Geom_traits::FT FT;
typedef typename Geom_traits::Point_3 Point; ///< == Point_3<Gt>
typedef typename Geom_traits::Vector_3 Vector; ///< == Vector_3<Gt>
typedef typename Geom_traits::Sphere_3 Sphere;
typedef typename Triangulation::Point_with_normal Point_with_normal;
///< Model of PointWithNormal_3
typedef typename Point_with_normal::Normal Normal; ///< Model of Kernel::Vector_3 concept.
// Private types
private:
// Repeat ReconstructionTriangulation_3 types
typedef typename Triangulation::Triangulation_data_structure Triangulation_data_structure;
typedef typename Geom_traits::Ray_3 Ray;
typedef typename Geom_traits::Plane_3 Plane;
typedef typename Geom_traits::Segment_3 Segment;
typedef typename Geom_traits::Triangle_3 Triangle;
typedef typename Geom_traits::Tetrahedron_3 Tetrahedron;
typedef typename Triangulation::Cell_handle Cell_handle;
typedef typename Triangulation::Vertex_handle Vertex_handle;
typedef typename Triangulation::Cell Cell;
typedef typename Triangulation::Vertex Vertex;
typedef typename Triangulation::Facet Facet;
typedef typename Triangulation::Edge Edge;
typedef typename Triangulation::Cell_circulator Cell_circulator;
typedef typename Triangulation::Facet_circulator Facet_circulator;
typedef typename Triangulation::Cell_iterator Cell_iterator;
typedef typename Triangulation::Facet_iterator Facet_iterator;
typedef typename Triangulation::Edge_iterator Edge_iterator;
typedef typename Triangulation::Vertex_iterator Vertex_iterator;
typedef typename Triangulation::Point_iterator Point_iterator;
typedef typename Triangulation::Finite_vertices_iterator Finite_vertices_iterator;
typedef typename Triangulation::Finite_cells_iterator Finite_cells_iterator;
typedef typename Triangulation::Finite_facets_iterator Finite_facets_iterator;
typedef typename Triangulation::Finite_edges_iterator Finite_edges_iterator;
typedef typename Triangulation::All_cells_iterator All_cells_iterator;
typedef typename Triangulation::Locate_type Locate_type;
// TAUCS solver
typedef Taucs_solver<double> Solver;
typedef std::vector<double> Sparse_vector;
// Data members.
// Warning: the Surface Mesh Generation package makes copies of implicit functions,
// thus this class must be lightweight and stateless.
private:
Triangulation& m_tr; // f() is pre-computed on vertices of m_tr by solving
// the Poisson equation Laplacian(f) = divergent(normals field).
// contouring and meshing
Point m_sink; // Point with the minimum value of f()
mutable Cell_handle m_hint; // last cell found = hint for next search
// Public methods
public:
/// Creates a scalar function from a set of oriented points.
/// Inserts the iterator range [first, beyond) into the triangulation 'tr',
/// refines it and solves for a piecewise linear scalar function
/// which gradient best matches the input normals.
///
/// If 'tr' is empty, this method creates an empty implicit function.
///
/// @param tr ReconstructionTriangulation_3 base of the Poisson indicator function.
Poisson_reconstruction_function(ReconstructionTriangulation_3& tr)
: m_tr(tr)
{
}
/// Creates a scalar function from a set of oriented points.
/// Inserts the iterator range [first, beyond) into the triangulation 'tr',
/// refines it and solves for a piecewise linear scalar function
/// which gradient best matches the input normals.
///
/// @commentheading Precondition:
/// InputIterator value_type must be convertible to Point_with_normal.
///
/// @param tr ReconstructionTriangulation_3 base of the Poisson indicator function.
/// @param first Iterator over first point to add.
/// @param beyond Past-the-end iterator to add.
template < class InputIterator >
Poisson_reconstruction_function(ReconstructionTriangulation_3& tr,
InputIterator first, InputIterator beyond)
: m_tr(tr)
{
insert(first, beyond);
}
/// Insert points.
///
/// @commentheading Precondition:
/// InputIterator value_type must be convertible to Point_with_normal.
///
/// @param first Iterator over first point to add.
/// @param beyond Past-the-end iterator to add.
/// @return the number of inserted points.
template < class InputIterator >
int insert(InputIterator first, InputIterator beyond)
{
return m_tr.insert(first, beyond);
}
/// Remove all points.
void clear()
{
m_tr.clear();
}
/// Get embedded triangulation.
ReconstructionTriangulation_3& triangulation()
{
return m_tr;
}
const ReconstructionTriangulation_3& triangulation() const
{
return m_tr;
}
/// Returns a sphere bounding the inferred surface.
Sphere bounding_sphere() const
{
return m_tr.input_points_bounding_sphere();
}
/// The function compute_implicit_function() must be called
/// after each insertion of oriented points.
/// It computes the piecewise linear scalar function 'f' by:
/// - applying Delaunay refinement.
/// - solving for 'f' at each vertex of the triangulation with a sparse linear solver.
/// - shifting and orienting 'f' such that 'f=0' at all input points and 'f<0' inside the inferred surface.
///
/// Returns false if the linear solver fails.
bool compute_implicit_function()
{
CGAL::Timer task_timer; task_timer.start();
CGAL_TRACE_STREAM << "Delaunay refinement...\n";
// Delaunay refinement
const FT radius_edge_ratio_bound = 2.5;
const unsigned int max_vertices = (unsigned int)1e7; // max 10M vertices
const FT enlarge_ratio = 1.5;
const FT size = sqrt(bounding_sphere().squared_radius()); // get triangulation's radius
const FT cell_radius_bound = size/5.; // large
unsigned int nb_vertices_added = delaunay_refinement(radius_edge_ratio_bound,cell_radius_bound,max_vertices,enlarge_ratio);
// Print status
CGAL_TRACE_STREAM << "Delaunay refinement: " << "added " << nb_vertices_added << " Steiner points, "
<< task_timer.time() << " seconds, "
<< (CGAL::Memory_sizer().virtual_size()>>20) << " Mb allocated"
<< std::endl;
task_timer.reset();
CGAL_TRACE_STREAM << "Solve Poisson equation...\n";
// Compute the Poisson indicator function f()
// at each vertex of the triangulation.
double lambda = 0.1;
double duration_assembly, duration_factorization, duration_solve;
if (!solve_poisson(lambda, &duration_assembly, &duration_factorization, &duration_solve))
{
std::cerr << "Error: cannot solve Poisson equation" << std::endl;
return false;
}
// Shift and orient f() such that:
// - f() = 0 on the input points,
// - f() < 0 inside the surface.
set_contouring_value(median_value_at_input_vertices());
// Print status
CGAL_TRACE_STREAM << "Solve Poisson equation: " << task_timer.time() << " seconds, "
<< (CGAL::Memory_sizer().virtual_size()>>20) << " Mb allocated"
<< std::endl;
task_timer.reset();
return true;
}
// TEMPORARY HACK
/// @cond SKIP_IN_MANUAL
/// Delaunay refinement (break bad tetrahedra, where
/// bad means badly shaped or too big). The normal of
/// Steiner points is set to zero.
/// Return the number of vertices inserted.
unsigned int delaunay_refinement(FT radius_edge_ratio_bound, ///< radius edge ratio bound (ignored if zero)
FT cell_radius_bound, ///< cell radius bound (ignored if zero)
unsigned int max_vertices, ///< number of vertices bound
FT enlarge_ratio) ///< bounding box enlarge ratio
{
CGAL_TRACE("Call delaunay_refinement(radius_edge_ratio_bound=%lf, cell_radius_bound=%lf, max_vertices=%u, enlarge_ratio=%lf)\n",
radius_edge_ratio_bound, cell_radius_bound, max_vertices, enlarge_ratio);
Sphere enlarged_bbox = enlarged_bounding_sphere(enlarge_ratio);
unsigned int nb_vertices_added = poisson_refine_triangulation(m_tr,radius_edge_ratio_bound,cell_radius_bound,max_vertices,enlarged_bbox);
CGAL_TRACE("End of delaunay_refinement()\n");
return nb_vertices_added;
}
/// Poisson reconstruction.
/// Return false on error.
bool solve_poisson(double lambda,
double* duration_assembly,
double* duration_factorization,
double* duration_solve,
bool is_normalized = false)
{
CGAL_TRACE("Call solve_poisson()\n");
double time_init = clock();
*duration_assembly = 0.0;
*duration_factorization = 0.0;
*duration_solve = 0.0;
long old_max_memory = CGAL::Peak_memory_sizer().peak_virtual_size();
CGAL_TRACE(" %ld Mb allocated, largest free memory block=%ld Mb, #blocks over 100 Mb=%ld\n",
long(CGAL::Memory_sizer().virtual_size())>>20,
long(CGAL::Peak_memory_sizer().largest_free_block()>>20),
long(CGAL::Peak_memory_sizer().count_free_memory_blocks(100*1048576)));
CGAL_TRACE(" Create matrix...\n");
// get #variables
unsigned int nb_variables = m_tr.index_unconstrained_vertices();
// at least one vertex must be constrained
if(nb_variables == m_tr.number_of_vertices())
{
constrain_one_vertex_on_convex_hull();
nb_variables = m_tr.index_unconstrained_vertices();
}
// Assemble linear system A*X=B
Solver solver(nb_variables, 9); // average non null elements per line = 8.3
Sparse_vector X(nb_variables);
Sparse_vector B(nb_variables);
Finite_vertices_iterator v;
for(v = m_tr.finite_vertices_begin();
v != m_tr.finite_vertices_end();
v++)
{
if(!v->constrained())
{
B[v->index()] = is_normalized ? div_normalized(v)
: div(v); // rhs -> divergent
assemble_poisson_row(solver,v,B,lambda);
}
}
*duration_assembly = (clock() - time_init)/CLOCKS_PER_SEC;
CGAL_TRACE(" Create matrix: done (%.2lf s)\n", *duration_assembly);
/*
time_init = clock();
if(!solver.solve_conjugate_gradient(B,X,10000,1e-15))
return false;
*duration_solve = (clock() - time_init)/CLOCKS_PER_SEC;
*/
CGAL_TRACE(" %ld Mb allocated, largest free memory block=%ld Mb, #blocks over 100 Mb=%ld\n",
long(CGAL::Memory_sizer().virtual_size())>>20,
long(CGAL::Peak_memory_sizer().largest_free_block()>>20),
long(CGAL::Peak_memory_sizer().count_free_memory_blocks(100*1048576)));
CGAL_TRACE(" Choleschy factorization...\n");
// Choleschy factorization M = L L^T
time_init = clock();
if(!solver.factorize_ooc())
return false;
*duration_factorization = (clock() - time_init)/CLOCKS_PER_SEC;
CGAL_TRACE(" Choleschy factorization: done (%.2lf s)\n", *duration_factorization);
// Print peak memory (Windows only)
long max_memory = CGAL::Peak_memory_sizer().peak_virtual_size();
if (max_memory > old_max_memory)
CGAL_TRACE(" Max allocation = %ld Mb\n", max_memory>>20);
CGAL_TRACE(" %ld Mb allocated, largest free memory block=%ld Mb, #blocks over 100 Mb=%ld\n",
long(CGAL::Memory_sizer().virtual_size())>>20,
long(CGAL::Peak_memory_sizer().largest_free_block()>>20),
long(CGAL::Peak_memory_sizer().count_free_memory_blocks(100*1048576)));
CGAL_TRACE(" Direct solve...\n");
// Direct solve by forward and backward substitution
time_init = clock();
if(!solver.solve_ooc(B,X))
return false;
*duration_solve = (clock() - time_init)/CLOCKS_PER_SEC;
CGAL_TRACE(" Direct solve: done (%.2lf s)\n", *duration_solve);
/*
// Choleschy factorization M = L L^T
time_init = clock();
if(!solver.factorize(true))
return false;
*duration_factorization = (clock() - time_init)/CLOCKS_PER_SEC;
// Direct solve by forward and backward substitution
time_init = clock();
if(!solver.solve(B,X,1))
return false;
*duration_solve = (clock() - time_init)/CLOCKS_PER_SEC;
*/
CGAL_TRACE(" Choleschy factorization + solve: done (%.2lf s)\n", *duration_factorization + *duration_solve);
// copy function's values to vertices
unsigned int index = 0;
for (v = m_tr.finite_vertices_begin(); v != m_tr.finite_vertices_end(); v++)
if(!v->constrained())
v->f() = X[index++];
CGAL_TRACE(" %ld Mb allocated, largest free memory block=%ld Mb, #blocks over 100 Mb=%ld\n",
long(CGAL::Memory_sizer().virtual_size())>>20,
long(CGAL::Peak_memory_sizer().largest_free_block()>>20),
long(CGAL::Peak_memory_sizer().count_free_memory_blocks(100*1048576)));
CGAL_TRACE("End of solve_poisson()\n");
return true;
}
/// Shift and orient the implicit function such that:
/// - the implicit function = 0 for points / f() = contouring_value,
/// - the implicit function < 0 inside the surface.
///
/// Return the minimum value of the implicit function.
FT set_contouring_value(FT contouring_value)
{
// median value set to 0.0
shift_f(-contouring_value);
// check value on convex hull (should be positive)
Vertex_handle v = any_vertex_on_convex_hull();
if(v->f() < 0.0)
flip_f();
// Update m_sink
FT sink_value = find_sink();
return sink_value;
}
// TEMPORARY HACK
/// @endcond
/// Evaluates the implicit function at a given 3D query point.
FT f(const Point& p) const
{
m_hint = m_tr.locate(p,m_hint);
if(m_hint == NULL)
return 1e38;
if(m_tr.is_infinite(m_hint))
return 1e38;
FT a,b,c,d;
barycentric_coordinates(p,m_hint,a,b,c,d);
return a * m_hint->vertex(0)->f() +
b * m_hint->vertex(1)->f() +
c * m_hint->vertex(2)->f() +
d * m_hint->vertex(3)->f();
}
/// 'ImplicitFunction' interface: evaluate implicit function for any 3D point.
FT operator()(const Point& p) const
{
return f(p);
}
/// Returns a point located inside the inferred surface.
Point get_inner_point() const
{
// Get point / the implicit function is minimum
return m_sink;
}
// TEMPORARY HACK
/// @cond SKIP_IN_MANUAL
/// Get median value of the implicit function over input vertices.
FT median_value_at_input_vertices() const
{
std::deque<FT> values;
Finite_vertices_iterator v;
for(v = m_tr.finite_vertices_begin();
v != m_tr.finite_vertices_end();
v++)
if(v->type() == Triangulation::INPUT)
values.push_back(v->f());
int size = values.size();
if(size == 0)
{
std::cerr << "Contouring: no input points\n";
return 0.0;
}
std::sort(values.begin(),values.end());
int index = size/2;
// return values[size/2];
return 0.5 * (values[index] + values[index+1]); // avoids singular cases
}
// TEMPORARY HACK
/// @endcond
// Private methods:
private:
// PA: todo change type (FT)
// check if this is in CGAL already
void barycentric_coordinates(const Point& p,
Cell_handle cell,
double& a,
double& b,
double& c,
double& d) const
{
const Point& pa = cell->vertex(0)->point();
const Point& pb = cell->vertex(1)->point();
const Point& pc = cell->vertex(2)->point();
const Point& pd = cell->vertex(3)->point();
Tetrahedron ta(pb,pc,pd,p);
Tetrahedron tb(pa,pc,pd,p);
Tetrahedron tc(pb,pa,pd,p);
Tetrahedron td(pb,pc,pa,p);
Tetrahedron tet(pa,pb,pc,pd);
double v = tet.volume();
a = std::fabs(ta.volume() / v);
b = std::fabs(tb.volume() / v);
c = std::fabs(tc.volume() / v);
d = std::fabs(td.volume() / v);
}
FT find_sink()
{
m_sink = CGAL::ORIGIN;
FT min_f = 1e38;
Finite_vertices_iterator v;
for(v = m_tr.finite_vertices_begin();
v != m_tr.finite_vertices_end();
v++)
{
if(v->f() < min_f)
{
m_sink = v->point();
min_f = v->f();
}
}
return min_f;
}
void shift_f(const FT shift)
{
Finite_vertices_iterator v;
for(v = m_tr.finite_vertices_begin();
v != m_tr.finite_vertices_end();
v++)
v->f() += shift;
}
void flip_f()
{
Finite_vertices_iterator v;
for(v = m_tr.finite_vertices_begin();
v != m_tr.finite_vertices_end();
v++)
v->f() = -v->f();
}
Vertex_handle any_vertex_on_convex_hull()
{
// TODO: return NULL if none and assert
std::vector<Vertex_handle> vertices;
m_tr.incident_vertices(m_tr.infinite_vertex(),std::back_inserter(vertices));
typename std::vector<Vertex_handle>::iterator it = vertices.begin();
return *it;
}
void constrain_one_vertex_on_convex_hull(const FT value = 0.0)
{
Vertex_handle v = any_vertex_on_convex_hull();
v->constrained() = true;
v->f() = value;
}
// divergent
FT div(Vertex_handle v)
{
std::vector<Cell_handle> cells;
m_tr.incident_cells(v,std::back_inserter(cells));
if(cells.size() == 0)
return 0.0;
FT div = 0.0;
typename std::vector<Cell_handle>::iterator it;
for(it = cells.begin(); it != cells.end(); it++)
{
Cell_handle cell = *it;
if(m_tr.is_infinite(cell))
continue;
// compute average normal per cell
Vector n = cell_normal(cell);
// zero normal - no need to compute anything else
if(n == CGAL::NULL_VECTOR)
continue;
// compute n'
int index = cell->index(v);
const Point& a = cell->vertex((index+1)%4)->point();
const Point& b = cell->vertex((index+2)%4)->point();
const Point& c = cell->vertex((index+3)%4)->point();
Vector nn = (index%2==0) ? CGAL::cross_product(b-a,c-a) : CGAL::cross_product(c-a,b-a);
nn = nn / std::sqrt(nn*nn); // normalize
Triangle face(a,b,c);
FT area = std::sqrt(face.squared_area());
div += n * nn * area;
}
return div;
}
FT div_normalized(Vertex_handle v)
{
std::vector<Cell_handle> cells;
m_tr.incident_cells(v,std::back_inserter(cells));
if(cells.size() == 0)
return 0.0;
FT length = 100000;
int counter = 0;
FT div = 0.0;
typename std::vector<Cell_handle>::iterator it;
for(it = cells.begin(); it != cells.end(); it++)
{
Cell_handle cell = *it;
if(m_tr.is_infinite(cell))
continue;
// compute average normal per cell
Vector n = cell_normal(cell);
// zero normal - no need to compute anything else
if(n == CGAL::NULL_VECTOR)
continue;
// compute n'
int index = cell->index(v);
const Point& x = cell->vertex(index)->point();
const Point& a = cell->vertex((index+1)%4)->point();
const Point& b = cell->vertex((index+2)%4)->point();
const Point& c = cell->vertex((index+3)%4)->point();
Vector nn = (index%2==0) ? CGAL::cross_product(b-a,c-a) : CGAL::cross_product(c-a,b-a);
nn = nn / std::sqrt(nn*nn); // normalize
Vector p = a - x;
Vector q = b - x;
Vector r = c - x;
FT p_n = std::sqrt(p*p);
FT q_n = std::sqrt(q*q);
FT r_n = std::sqrt(r*r);
FT solid_angle = p*(CGAL::cross_product(q,r));
solid_angle = std::abs(solid_angle * 1.0 / (p_n*q_n*r_n + (p*q)*r_n + (q*r)*p_n + (r*p)*q_n));
Triangle face(a,b,c);
FT area = std::sqrt(face.squared_area());
length = std::sqrt((x-a)*(x-a)) + std::sqrt((x-b)*(x-b)) + std::sqrt((x-c)*(x-c));
counter++;
div += n * nn * area * 3 / length ;
}
return div;
}
Vector cell_normal(Cell_handle cell)
{
const Vector& n0 = cell->vertex(0)->normal();
const Vector& n1 = cell->vertex(1)->normal();
const Vector& n2 = cell->vertex(2)->normal();
const Vector& n3 = cell->vertex(3)->normal();
Vector n = n0 + n1 + n2 + n3;
FT sq_norm = n*n;
if(sq_norm != 0.0)
return n / std::sqrt(sq_norm); // normalize
else
return CGAL::NULL_VECTOR;
}
// cotan formula as area(voronoi face) / len(primal edge)
FT cotan_geometric(Edge& edge)
{
Cell_handle cell = edge.first;
Vertex_handle vi = cell->vertex(edge.second);
Vertex_handle vj = cell->vertex(edge.third);
// primal edge
const Point& pi = vi->point();
const Point& pj = vj->point();
Vector primal = pj - pi;
FT len_primal = std::sqrt(primal * primal);
return area_voronoi_face(edge) / len_primal;
}
// spin around edge
// return area(voronoi face)
FT area_voronoi_face(Edge& edge)
{
// circulate around edge
Cell_circulator circ = m_tr.incident_cells(edge);
Cell_circulator done = circ;
std::vector<Point> voronoi_points;
do
{
Cell_handle cell = circ;
if(!m_tr.is_infinite(cell))
voronoi_points.push_back(m_tr.dual(cell));
else // one infinite tet, switch to another calculation
return area_voronoi_face_boundary(edge);
circ++;
}
while(circ != done);
if(voronoi_points.size() < 3)
{
CGAL_surface_reconstruction_points_assertion(false);
return 0.0;
}
// sum up areas
FT area = 0.0;
const Point& a = voronoi_points[0];
unsigned int nb_triangles = voronoi_points.size() - 2;
for(unsigned int i=1;i<nb_triangles;i++)
{
const Point& b = voronoi_points[i];
const Point& c = voronoi_points[i+1];
Triangle triangle(a,b,c);
area += std::sqrt(triangle.squared_area());
}
return area;
}
// approximate area when a cell is infinite
FT area_voronoi_face_boundary(Edge& edge)
{
FT area = 0.0;
Vertex_handle vi = edge.first->vertex(edge.second);
Vertex_handle vj = edge.first->vertex(edge.third);
const Point& pi = vi->point();
const Point& pj = vj->point();
Point m = CGAL::midpoint(pi,pj);
// circulate around each incident cell
Cell_circulator circ = m_tr.incident_cells(edge);
Cell_circulator done = circ;
do
{
Cell_handle cell = circ;
if(!m_tr.is_infinite(cell))
{
// circumcenter of cell
Point c = m_tr.dual(cell);
Tetrahedron tet = m_tr.tetrahedron(cell);
int i = cell->index(vi);
int j = cell->index(vj);
int k = -1, l = -1;
other_two_indices(i,j, &k,&l);
Vertex_handle vk = cell->vertex(k);
Vertex_handle vl = cell->vertex(l);
const Point& pk = vk->point();
const Point& pl = vl->point();
// if circumcenter is outside tet
// pick barycenter instead
if(tet.has_on_unbounded_side(c))
{
Point cell_points[4] = {pi,pj,pk,pl};
c = CGAL::centroid(cell_points, cell_points+4);
}
Point ck = CGAL::circumcenter(pi,pj,pk);
Point cl = CGAL::circumcenter(pi,pj,pl);
Triangle mcck(m,m,ck);
Triangle mccl(m,m,cl);
area += std::sqrt(mcck.squared_area());
area += std::sqrt(mccl.squared_area());
}
circ++;
}
while(circ != done);
return area;
}
// Get indices different from i and j
void other_two_indices(int i, int j, int* k, int* l)
{
CGAL_surface_reconstruction_points_assertion(i != j);
bool k_done = false;
bool l_done = false;
for(int index=0;index<4;index++)
{
if(index != i && index != j)
{
if(!k_done)
{
*k = index;
k_done = true;
}
else
{
*l = index;
l_done = true;
}
}
}
CGAL_surface_reconstruction_points_assertion(k_done);
CGAL_surface_reconstruction_points_assertion(l_done);
}
// Assemble vi's row of the linear system A*X=B
void assemble_poisson_row(Solver& solver,
Vertex_handle vi,
Sparse_vector& B,
double lambda)
{
// assemble new row
solver.begin_row();
// for each vertex vj neighbor of vi
std::vector<Vertex_handle> vertices;
m_tr.incident_vertices(vi,std::back_inserter(vertices));
double diagonal = 0.0;
for(typename std::vector<Vertex_handle>::iterator it = vertices.begin();
it != vertices.end();
it++)
{
Vertex_handle vj = *it;
if(m_tr.is_infinite(vj))
continue;
// get corresponding edge
Edge edge = sorted_edge(vi,vj);
double cij = cotan_geometric(edge);
if(vj->constrained())
B[vi->index()] -= cij * vj->f(); // change rhs
else
solver.add_value(vj->index(),-cij); // off-diagonal coefficient
diagonal += cij;
}
// diagonal coefficient
if (vi->type() == Triangulation::INPUT)
solver.add_value(vi->index(),diagonal + lambda) ;
else
solver.add_value(vi->index(),diagonal);
// end matrix row
solver.end_row();
}
Edge sorted_edge(Vertex_handle vi,
Vertex_handle vj)
{
int i1 = 0;
int i2 = 0;
Cell_handle cell = NULL;
bool success;
if(vi->index() > vj->index())
success = m_tr.is_edge(vi,vj,cell,i1,i2);
else
success = m_tr.is_edge(vj,vi,cell,i1,i2);
CGAL_surface_reconstruction_points_assertion(success);
return Edge(cell,i1,i2);
}
/// Compute enlarged geometric bounding sphere of the embedded triangulation.
Sphere enlarged_bounding_sphere(FT ratio) const
{
Sphere bbox = bounding_sphere(); // triangulation's bounding sphere
return Sphere(bbox.center(), bbox.squared_radius() * ratio*ratio);
}
}; // end of Poisson_reconstruction_function
CGAL_END_NAMESPACE
#endif // CGAL_POISSON_RECONSTRUCTION_FUNCTION_H