cgal/Partition_2/include/CGAL/Partition_vertex_map.h

488 lines
15 KiB
C++

// Copyright (c) 2000 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $Source$
// $Revision$ $Date$
// $Name$
//
// Author(s) : Susan Hert <hert@mpi-sb.mpg.de>
#ifndef CGAL_PARTITION_VERTEX_MAP_H
#define CGAL_PARTITION_VERTEX_MAP_H
#include <map>
#include <iostream>
#include <CGAL/circulator.h>
#include <CGAL/Indirect_less_xy_2.h>
#include <cassert>
namespace CGAL {
const int PARTITION_VMAP_UNSHARED_EDGE = -1;
template <class Traits>
class Partition_vertex_map;
template <class Iterator>
class Edge_info;
template <class Iterator, class Traits>
class CW_indirect_edge_info_compare
{
public:
typedef typename Traits::Left_turn_2 Left_turn_2;
typedef typename Traits::Less_xy_2 Less_xy_2;
typedef typename Traits::Point_2 Point_2;
typedef CGAL::Edge_info<Iterator> Edge_info;
CW_indirect_edge_info_compare(){}
CW_indirect_edge_info_compare (Iterator v_it) : vertex_it(v_it),
left_turn(Traits().left_turn_2_object()),
less_xy(Traits().less_xy_2_object())
{}
bool operator()(Edge_info e1, Edge_info e2)
{
bool e1_less = less_xy((*e1.endpoint()), *vertex_it);
bool e2_less = less_xy((*e2.endpoint()), *vertex_it);
bool e1_to_e2_left_turn = left_turn((*e1.endpoint()), *vertex_it,
(*e2.endpoint()));
// if both edges are on the same side of the vertical line through
// _vertex then e1 comes before e2 (in CW order from the vertical line)
// if one makes a left turn going from e1 to e2
if (e1_less == e2_less)
return e1_to_e2_left_turn;
else // e1 comes first if it is to the right of the vertical line
return !e1_less;
}
private:
Iterator vertex_it;
Left_turn_2 left_turn;
Less_xy_2 less_xy;
};
template <class Iterator>
class Edge_info
{
public:
Edge_info() {}
Edge_info(Iterator e_ref, int p_num1, int p_num2) : _endpoint_ref(e_ref),
_poly_num1(p_num1), _poly_num2(p_num2)
{ }
Edge_info(Iterator e_ref, int p_num1) : _endpoint_ref(e_ref),
_poly_num1(p_num1), _poly_num2(PARTITION_VMAP_UNSHARED_EDGE)
{ }
void set_poly_num1(int p_num)
{
_poly_num1 = p_num;
}
void set_poly_num2(int p_num)
{
_poly_num2 = p_num;
}
void set_endpoint(Iterator e_ref)
{
_endpoint_ref = e_ref;
}
bool same_edge(Iterator e_ref)
{
return e_ref == endpoint();
}
Iterator endpoint() const { return _endpoint_ref; }
int poly_num1() const { return _poly_num1; }
int poly_num2() const { return _poly_num2; }
private:
Iterator _endpoint_ref;
int _poly_num1;
int _poly_num2;
};
template <class Traits_>
class Pvm_edge_list : public std::list<
Edge_info<typename Traits_::Polygon_2::Vertex_iterator> >
{
public:
typedef Traits_ Traits;
typedef Pvm_edge_list<Traits> Self;
typedef typename Traits::Point_2 Point_2;
typedef typename Traits::Orientation_2 Orientation_pred;
typedef typename Traits::Polygon_2::Vertex_iterator Vertex_iterator;
typedef Edge_info<Vertex_iterator> Edge;
typedef typename std::list<Edge>::iterator Self_iterator;
typedef typename std::list<Edge>::const_iterator Self_const_iterator;
typedef Circulator_from_iterator<Self_const_iterator>
Self_const_circulator;
#ifdef CGAL_CFG_RWSTD_NO_MEMBER_TEMPLATES
static CW_indirect_edge_info_compare<Vertex_iterator, Traits>
cw_indirect_edge_info_compare;
static bool compare(const Edge& e1, const Edge& e2)
{
return cw_indirect_edge_info_compare(e1,e2);
}
#endif
void insert_next(Vertex_iterator endpoint_ref, int num)
{
Self_iterator e_it;
for (e_it = this->begin();
e_it != this->end() && (*e_it).endpoint() != endpoint_ref;
e_it++)
{}
if (e_it != this->end())
(*e_it).set_poly_num2(num);
else
push_back(Edge(endpoint_ref, num));
}
void insert_prev(Vertex_iterator endpoint_ref, int num)
{
Self_iterator e_it;
for (e_it = this->begin();
e_it != this->end() && (*e_it).endpoint() != endpoint_ref;
e_it++)
{}
if (e_it != this->end())
(*e_it).set_poly_num2(num);
else
push_front(Edge(endpoint_ref, num));
}
// PRE: polygons must be simple
bool edges_overlap(Vertex_iterator vertex_it)
{
#ifdef CGAL_PARTITION_CHECK_DEBUG
std::cout << "before sort: edges for " << *vertex_it << std::endl;
std::cout << *this << std::endl;
#endif
int num_unshared = 0;
// Don't want to sort the edges for vertices of degree 2 because they
// are already in CCW order (since the partition polygons were in CCW
// order), and this is what you need when you construct the union
// polygon.
if (this->size() > 2){
#ifdef CGAL_CFG_RWSTD_NO_MEMBER_TEMPLATES
cw_indirect_edge_info_compare =
CW_indirect_edge_info_compare<Vertex_iterator,Traits>(vertex_it);
sort(&Self::compare);
#else
sort(CW_indirect_edge_info_compare<Vertex_iterator,Traits>(vertex_it));
#endif
}
#ifdef CGAL_PARTITION_CHECK_DEBUG
std::cout << "after sort: edges for " << *vertex_it << std::endl;
std::cout << *this << std::endl;
#endif
Self_const_iterator prev_e_it = this->begin();
Self_const_iterator e_it;
for (e_it = this->begin(); e_it != this->end(); e_it++)
{
if ((*e_it).poly_num1() == PARTITION_VMAP_UNSHARED_EDGE)
num_unshared++;
if ((*e_it).poly_num2() == PARTITION_VMAP_UNSHARED_EDGE)
num_unshared++;
if ((*prev_e_it).poly_num1() != (*e_it).poly_num1() &&
(*prev_e_it).poly_num1() != (*e_it).poly_num2() &&
(*prev_e_it).poly_num2() != (*e_it).poly_num1() &&
(*prev_e_it).poly_num2() != (*e_it).poly_num2())
{
return true;
}
prev_e_it = e_it;
}
if ((*prev_e_it).poly_num1() != (*this->begin()).poly_num1() &&
(*prev_e_it).poly_num1() != (*this->begin()).poly_num2() &&
(*prev_e_it).poly_num2() != (*this->begin()).poly_num1() &&
(*prev_e_it).poly_num2() != (*this->begin()).poly_num2())
{
return true;
}
return (num_unshared > 2);
}
// NOTE: the edges here are sorted in CW order so the next CCW edge
// comes BEFORE the edge with endpoint v_it in the sorted list
Edge next_ccw_edge_info(Vertex_iterator v_it) const
{
Self_const_circulator first_e(this->begin(), this->end(), this->begin());
Self_const_circulator e_circ = first_e;
do
{
if ((*e_circ).endpoint() == v_it)
{
e_circ--; // go to the previous endpoint
return *e_circ;
}
}
while (++e_circ != first_e);
return *first_e; // shouldn't get here unless v_it is not in list
}
};
#ifdef CGAL_CFG_RWSTD_NO_MEMBER_TEMPLATES
template <class Traits>
CW_indirect_edge_info_compare<typename Traits::Polygon_2::Vertex_iterator,
Traits>
Pvm_edge_list<Traits>::cw_indirect_edge_info_compare;
#endif
template <class Traits>
std::ostream& operator<<(std::ostream& os,
const Pvm_edge_list<Traits>& edges)
{
typename Pvm_edge_list<Traits>::const_iterator e_it;
for (e_it = edges.begin(); e_it != edges.end(); e_it++)
{
os << " " << (*(*e_it).endpoint())
<< " from poly #" << (*e_it).poly_num1()
<< " and poly #" << (*e_it).poly_num2()
<< std::endl;
}
return os;
}
template <class Traits>
class Partition_vertex_map :
public std::map<typename Traits::Polygon_2::Vertex_iterator,
Pvm_edge_list<Traits>,
Indirect_less_xy_2<Traits> >
{
public:
typedef Partition_vertex_map<Traits> Self;
typedef typename std::map<typename Traits::Polygon_2::Vertex_iterator,
Pvm_edge_list<Traits>,
Indirect_less_xy_2<Traits> >::iterator
Self_iterator;
typedef typename Traits::Point_2 Point_2;
typedef typename Traits::Polygon_2::Vertex_iterator Vertex_iterator;
typedef Edge_info<Vertex_iterator> Edge;
Partition_vertex_map() {}
#ifdef CGAL_CFG_RWSTD_NO_MEMBER_TEMPLATES
static CW_indirect_edge_info_compare<Vertex_iterator,Traits>
cw_indirect_edge_info_compare;
static bool compare(const Edge & e1, const Edge& e2)
{
return cw_indirect_edge_info_compare(e1, e2);
}
#endif
template <class InputIterator>
Partition_vertex_map(InputIterator first_poly, InputIterator last_poly)
{ build(first_poly, last_poly); }
template <class InputIterator>
void build(InputIterator poly_first, InputIterator poly_last)
{
typedef std::pair<Self_iterator, bool> Location_pair;
typedef Pvm_edge_list<Traits> Pvm_edge_list;
typedef std::pair<Vertex_iterator, Pvm_edge_list> P_Vertex;
Location_pair v_loc_pair;
Location_pair begin_v_loc_pair;
Location_pair prev_v_loc_pair;
Vertex_iterator vtx_begin;
Vertex_iterator vtx_end;
Vertex_iterator v_it;
int poly_num = 0;
for (; poly_first != poly_last; poly_first++, poly_num++)
{
vtx_begin = (*poly_first).vertices_begin();
vtx_end = (*poly_first).vertices_end();
begin_v_loc_pair = this->insert(P_Vertex(vtx_begin, Pvm_edge_list()));
prev_v_loc_pair = begin_v_loc_pair;
v_it = vtx_begin;
for (v_it++; v_it != vtx_end; v_it++)
{
v_loc_pair = this->insert(P_Vertex(v_it, Pvm_edge_list()));
insert_next_edge(prev_v_loc_pair.first,
v_loc_pair.first,
poly_num);
insert_prev_edge(v_loc_pair.first,
prev_v_loc_pair.first,
poly_num);
prev_v_loc_pair = v_loc_pair;
}
insert_next_edge(prev_v_loc_pair.first, begin_v_loc_pair.first,
poly_num);
insert_prev_edge(begin_v_loc_pair.first, prev_v_loc_pair.first,
poly_num);
}
}
void insert_next_edge(Self_iterator& v1_ref, Self_iterator& v2_ref,
int num)
{
(*v1_ref).second.insert_next((*v2_ref).first, num);
}
void insert_prev_edge(Self_iterator& v1_ref, Self_iterator& v2_ref,
int num)
{
(*v1_ref).second.insert_prev((*v2_ref).first, num);
}
bool polygons_overlap()
{
Self_iterator v_it;
for (v_it = this->begin(); v_it != this->end(); v_it++)
{
if ((*v_it).second.edges_overlap((*v_it).first)) return true;
}
return false;
}
template <class OutputIterator>
OutputIterator union_vertices(OutputIterator result)
{
if (this->empty()) return result;
Self_iterator m_it = this->begin();
Vertex_iterator v_it;
Vertex_iterator first_v_it;
Vertex_iterator prev_v_it;
Vertex_iterator next_v_it;
// find a vertex with degree 2 (there must be at least one)
while (m_it != this->end() && (*m_it).second.size() != 2)
m_it++;
CGAL_assertion (m_it != this->end());
// insert this vertex and the two around it
first_v_it = prev_v_it = (*(*m_it).second.begin()).endpoint();
#ifdef CGAL_PARTITION_CHECK_DEBUG
std::cout << "union_vertices: inserting " << (*prev_v_it) << std::endl;
#endif
*result = *prev_v_it;
result++;
#ifdef CGAL_PARTITION_CHECK_DEBUG
std::cout << "union_vertices: inserting "<< *(*m_it).first << std::endl;
#endif
*result = *(*m_it).first;
result++;
next_v_it = (*m_it).second.back().endpoint();
#ifdef CGAL_PARTITION_CHECK_DEBUG
std::cout << "union_vertices: inserting " << *next_v_it << std::endl;
#endif
*result = *next_v_it;
result++;
// find the map iterator corresponding to the next vertex
prev_v_it = (*m_it).first;
v_it = next_v_it;
m_it = find(v_it);
while (v_it != first_v_it && m_it != this->end())
{
#ifdef CGAL_PARTITION_CHECK_DEBUG
std::cout << "union_vertices: prev_v_it " << (*prev_v_it)
<< " v_it " << (*v_it) << " next_v_it "
<< (*next_v_it) << std::endl;
#endif
// Don't want to sort the edges for vertices of degree 2 because they
// are already in CCW order (since the partition polygons were in CCW
// order), and this is what you need to begin the construction
// of the union polygon.
if ((*m_it).second.size() > 2){
#ifdef CGAL_CFG_RWSTD_NO_MEMBER_TEMPLATES
cw_indirect_edge_info_compare =
CW_indirect_edge_info_compare<Vertex_iterator,Traits>((*m_it).first);
(*m_it).second.sort(&Self::compare);
#else
(*m_it).second.sort(
CW_indirect_edge_info_compare<Vertex_iterator,Traits>((*m_it).first));
#endif
}
// find the previous vertex in this vertex's list
next_v_it=(*m_it).second.next_ccw_edge_info(prev_v_it).endpoint();
if (next_v_it != first_v_it)
{
#ifdef CGAL_PARTITION_CHECK_DEBUG
std::cout << "union_vertices: inserting "
<< *next_v_it << std::endl;
#endif
*result = *next_v_it;
result++;
}
prev_v_it = v_it;
v_it = next_v_it;
m_it = find(v_it);
CGAL_assertion (m_it == this->end() || (*m_it).first == v_it);
}
#ifdef CGAL_PARTITION_CHECK_DEBUG
if (v_it == first_v_it)
std::cout << "union_vertices: stopped because first was reached "
<< std::endl;
else
std::cout << "union_vertices: stopped because end was reached "
<< std::endl;
#endif
return result;
}
};
#ifdef CGAL_CFG_RWSTD_NO_MEMBER_TEMPLATES
template <class Traits>
CW_indirect_edge_info_compare<typename Traits::Polygon_2::Vertex_iterator,
Traits>
Partition_vertex_map<Traits>::cw_indirect_edge_info_compare;
#endif
}
#endif // CGAL_PARTITION_VERTEX_MAP_H