cgal/Kinetic_data_structures/test/Polynomial_kernel/polynomial.cpp

267 lines
6.7 KiB
C++

#define CGAL_CHECK_EXACTNESS
#define CGAL_CHECK_EXPENSIVE
#include <CGAL/basic.h>
#include <CGAL/Polynomial/basic.h>
#include <CGAL/Polynomial/Polynomial.h>
#include <CGAL/Polynomial/Fixed_polynomial.h>
#include <CGAL/Polynomial/internal/Rational/Rational_traits_base.h>
//#include <CGAL/Polynomial/internal/Filtered_rational/Filtered_rational_traits.h>
//#include <CGAL/Polynomial/Default_filtering_traits.h>
#ifdef CGAL_USE_CORE
#include <CGAL/Polynomial/CORE_kernel.h>
#include <CGAL/CORE_Expr.h>
#endif
#include <vector>
//#include "write_maple_functions.h"
bool for_maple=false;
template <class Polynomial>
void write(const char *expr, const Polynomial &v)
{
if (for_maple) {
std::cout << "evalb(simplify(expand(" << expr << ")) = " << v << ");\n";
}
else {
std::cout << expr << ": " << v << std::endl;
}
}
template <class Polynomial>
void write_variable(const char *name, const Polynomial &v)
{
if (for_maple) {
std::cout << name << ":=" << v << ":\n";
}
else {
std::cout << name << ": " << v << std::endl;
}
}
template <class Traits>
void check_equal(const typename Traits::Function&a, const typename Traits::Function &b) {
if (a != b) {
std::cerr << a << " != " << b << std::endl;
assert(a==b);
}
}
template <class Traits>
void test_polynomial(const Traits &tr)
{
typedef typename Traits::Construct_function CF;
typedef typename Traits::Function Polynomial;
typedef typename Polynomial::NT NT;
CF cf= tr.construct_function_object();
NT v[] = {-1, 2, 27, -17, 0, 0};
// NT v[] = {0, 0, 0, 0, 0, 0};
Polynomial p(v, v+6);
Polynomial q(v, v+3);
NT a(2);
write_variable( "p", p);
write_variable("q", q );
write("-p", (-p));
check_equal<Traits>(-p , cf(1,-2,-27,17));
write("p-p",(p-p));
check_equal<Traits>(p-p , cf(0));
write("p+q" , (p+q) );
check_equal<Traits>(p+q , cf( -2, 4, 54, -17));
write("p-q" , (p-q));
check_equal<Traits>(p-q , cf(0,0,0,-17));
write("q*(p-q)" , q*(p-q) );
check_equal<Traits>(q*(p-q) , cf(0,0,0,17,-34,-459));
write_variable( "a", a);
Polynomial diff(p-q);
Polynomial dp(diff +Polynomial(a));
write("(p-q)+a" , dp );
check_equal<Traits>((p-q)+Polynomial(a) , cf(2, 0, 0, -17));
write("(p-q)-a" , ((p-q)-a) );
check_equal<Traits>((p-q)-Polynomial(a) , cf(-2, 0, 0, -17));
write("a*(p-q)" , (a*(p-q)) );
check_equal<Traits>((Polynomial(a)*(p-q)) , cf(0,0,0,-34));
write("(p-q)*a" , ((p-q)*a) );
check_equal<Traits>(((p-q)*Polynomial(a)) , cf(0,0,0,-34));
write("(p-q)/a" , ((p-q)/a) );
check_equal<Traits>((Polynomial(p-q)/a) , cf(0,0,0,-NT(.5)*NT(17)));
write("subs(t=-t, p)", tr.negate_variable_object()(p) );
check_equal<Traits>(tr.negate_variable_object()(p) , cf( -1, -2, 27, 17));
/*write("t^degree(p) * subs(t=(1/t), p)", tr.invert_variable_object()(p) );
check_equal<Traits>( tr.invert_variable_object()(p) , cf(-17, 27, 2, -1));*/
NT v1[] = {-1, 1};
NT v2[] = {-2, 1};
Polynomial r = Polynomial(v1, v1+2);
Polynomial s = Polynomial(v2, v2+2);
p = r * r * s + Polynomial(NT(1));
write_variable( "p", p);
check_equal<Traits>(p , cf(-1, 5, -4, 1));
q = r * s;
write_variable("q", q );
check_equal<Traits>(q , cf( 2, -3, 1));
write("rem(p,q,t)",
tr.remainder_object()(p,q) );
check_equal<Traits>(tr.remainder_object()(p,q) , cf(1));
write("prem(p,q,t)",
tr.pseudo_remainder_object()(p,q) );
check_equal<Traits>(tr.pseudo_remainder_object()(p,q) , cf(1));
write("quo(p,q,t)",
tr.quotient_object()(p,q) );
check_equal<Traits>(tr.quotient_object()(p,q) , cf(-1,1));
write("pquo(p,q,t)",
tr.pseudo_quotient_object()(p,q) );
check_equal<Traits>(tr.pseudo_quotient_object()(p,q) , cf(-1,1));
p = r * r * s * s * s;
write_variable( "p", p);
check_equal<Traits>(p , cf(-8, 28, -38, 25, -8, 1));
q = r * s;
write_variable("q", q );
check_equal<Traits>(q , cf(2,-3,1));
write("rem(p,q,t)",
tr.remainder_object()(p,q) );
check_equal<Traits>(tr.remainder_object()(p,q) , cf(0));
write("prem(p,q,t)",
tr.pseudo_remainder_object()(p,q) );
check_equal<Traits>(tr.pseudo_remainder_object()(p,q) , cf(0));
write("quo(p,q,t)",
tr.quotient_object()(p,q) );
check_equal<Traits>(tr.quotient_object()(p,q) , cf(-4, 8, -5, 1));
write("pquo(p,q,t)",
tr.pseudo_quotient_object()(p,q) );
check_equal<Traits>(tr.pseudo_quotient_object()(p,q) , cf(-4, 8, -5, 1));
/* int shift = 6;
write("p * t^6", tr.shift_power_object(shift)(p) );
check_equal<Traits>(tr.shift_power_object(shift)(p)
, cf(0,0,0,0,0,0,-8, 28, -38, 25, -8, 1));*/
NT v3[] = {0, 1};
Polynomial t = Polynomial(v3, v3+2);
p = t * t;
write_variable( "p", p);
/*NT new_zero = NT(-1);
write("subs(t=t-1,p)", tr.rational_translate_zero_object(new_zero)(p));
check_equal<Traits>(tr.rational_translate_zero_object(new_zero)(p)
, cf(1, -2, 1));*/
}
int main(int argc, char* argv[])
{
//CORE::extLong pi=CORE_posInfty;
// CORE::Expr ep(CORE_posInfty);
//std::cout << /*pi << " " <<*/ ep << std::endl;
if ( argc > 1 ) {
for_maple = (atoi(argv[1]) != 0);
}
/*
typedef CORE::BigRat NT;
typedef CORE::Polynomial<NT> P;
NT pc[4];
pc[0]=NT("-1/1");
pc[1]=NT("2/1");
pc[2]=NT("27/1");
pc[3]=NT("-17/1");
P p(3, pc);
NT qc[4];
qc[0]=NT("-1/1");
qc[1]=NT("2/1");
qc[2]=NT("27/1");
P q(2, qc);
std::cout << p << " " << q << std::endl;
NT a("2");
P r= (p+q) + a;
}*/
/*if (for_maple){
write_maple_functions(std::cout);
}*/
{
std::cout << "Testing regular poly.\n";
typedef CGAL::POLYNOMIAL::Default_field_nt NT;
typedef CGAL_POLYNOMIAL_NS::Polynomial<NT> Polynomial;
typedef CGAL_POLYNOMIAL_NS::internal::Rational_traits_base<Polynomial>
Rational_traits;
Rational_traits tr;
test_polynomial(tr);
}
std::cout <<"\n\n\n\n\n";
/*{
std::cout << "Testing filtered poly.\n";
typedef CGAL::POLYNOMIAL::Default_field_nt NT;
typedef CGAL_POLYNOMIAL_NS::Default_filtering_traits<NT> FT;
typedef CGAL_POLYNOMIAL_NS::internal::Filtered_rational_traits<FT> Tr;
Tr tr;
test_polynomial(tr);
}*/
std::cout <<"\n\n\n\n\n";
#ifdef CGAL_USE_CORE
{
std::cout << "Testing core poly.\n";
typedef CGAL_POLYNOMIAL_NS::CORE_kernel CORE_kernel;
CORE_kernel tr;
test_polynomial(tr);
}
std::cout <<"\n\n\n\n\n";
#endif
{
std::cout << "Testing fixed poly.\n";
typedef CGAL::POLYNOMIAL::Default_field_nt NT;
typedef CGAL_POLYNOMIAL_NS::Fixed_polynomial<NT, 30> Poly;
typedef CGAL_POLYNOMIAL_NS::internal::Rational_traits_base<Poly>
Rational_traits;
Rational_traits tr;
test_polynomial(tr);
}
return 0;
}