cgal/Classification/include/CGAL/Classification/Point_set_feature_generator.h

753 lines
26 KiB
C++

// Copyright (c) 2017 GeometryFactory Sarl (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Simon Giraudot
#ifndef CGAL_CLASSIFICATION_POINT_SET_FEATURE_GENERATOR_H
#define CGAL_CLASSIFICATION_POINT_SET_FEATURE_GENERATOR_H
#include <CGAL/property_map.h>
#include <CGAL/Classification/Point_set_neighborhood.h>
#include <CGAL/Classification/Planimetric_grid.h>
#include <CGAL/Classification/Local_eigen_analysis.h>
#include <CGAL/Classification/Feature_base.h>
#include <CGAL/Classification/Feature/Hsv.h>
#include <CGAL/Classification/Feature/Distance_to_plane.h>
#include <CGAL/Classification/Feature/Echo_scatter.h>
#include <CGAL/Classification/Feature/Elevation.h>
#include <CGAL/Classification/Feature/Vertical_dispersion.h>
#include <CGAL/Classification/Feature/Verticality.h>
#include <CGAL/Classification/Feature/Eigen.h>
#include <CGAL/Classification/Label.h>
#include <CGAL/bounding_box.h>
#include <boost/property_tree/ptree.hpp>
#include <boost/property_tree/xml_parser.hpp>
#include <boost/foreach.hpp>
#include <boost/algorithm/string/predicate.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/lexical_cast.hpp>
#include <CGAL/Real_timer.h>
#include <CGAL/demangle.h>
#ifdef CGAL_LINKED_WITH_TBB
#include <tbb/task_group.h>
#include <tbb/mutex.h>
#endif // CGAL_LINKED_WITH_TBB
namespace CGAL {
namespace Classification {
/*!
\ingroup PkgClassificationDataStructures
\brief Generates a set of generic features for point set
classification.
This class takes care of computing all necessary data structures and
of generating a set of generic features at multiple scales to
increase the reliability of the classification.
\tparam GeomTraits model of \cgal Kernel.
\tparam PointRange model of `ConstRange`. Its iterator type is
`RandomAccessIterator` and its value type is the key type of
`PointMap`.
\tparam PointMap model of `ReadablePropertyMap` whose key
type is the value type of the iterator of `PointRange` and value type
is `GeomTraits::Point_3`.
\tparam ConcurrencyTag enables sequential versus parallel
algorithm. Possible values are `Parallel_tag` (default value is %CGAL
is linked with TBB) or `Sequential_tag` (default value otherwise).
\tparam DiagonalizeTraits model of `DiagonalizeTraits` used for
matrix diagonalization. It can be omitted: if Eigen 3 (or greater)
is available and `CGAL_EIGEN3_ENABLED` is defined then an overload
using `Eigen_diagonalize_traits` is provided. Otherwise, the
internal implementation `Diagonalize_traits` is used.
*/
template <typename GeomTraits,
typename PointRange,
typename PointMap,
#if defined(DOXYGEN_RUNNING)
typename ConcurrencyTag,
#elif defined(CGAL_LINKED_WITH_TBB)
typename ConcurrencyTag = CGAL::Parallel_tag,
#else
typename ConcurrencyTag = CGAL::Sequential_tag,
#endif
#if defined(DOXYGEN_RUNNING)
typename DiagonalizeTraits>
#else
typename DiagonalizeTraits = CGAL::Default_diagonalize_traits<float,3> >
#endif
class Point_set_feature_generator
{
public:
typedef typename GeomTraits::Iso_cuboid_3 Iso_cuboid_3;
/// \cond SKIP_IN_MANUAL
typedef typename PointRange::const_iterator Iterator;
typedef typename PointMap::value_type Point;
/// \endcond
typedef Classification::Planimetric_grid
<GeomTraits, PointRange, PointMap> Planimetric_grid;
typedef Classification::Point_set_neighborhood
<GeomTraits, PointRange, PointMap> Neighborhood;
typedef Classification::Local_eigen_analysis Local_eigen_analysis;
/// \cond SKIP_IN_MANUAL
typedef Classification::Feature_handle Feature_handle;
typedef Classification::Label Label;
typedef Classification::Label_handle Label_handle;
typedef Classification::Feature::Anisotropy Anisotropy;
typedef Classification::Feature::Distance_to_plane
<PointRange, PointMap> Distance_to_plane;
typedef Classification::Feature::Eigentropy Eigentropy;
typedef Classification::Feature::Elevation
<GeomTraits, PointRange, PointMap> Elevation;
typedef Classification::Feature::Linearity Linearity;
typedef Classification::Feature::Omnivariance Omnivariance;
typedef Classification::Feature::Planarity Planarity;
typedef Classification::Feature::Sphericity Sphericity;
typedef Classification::Feature::Sum_eigenvalues Sum_eigen;
typedef Classification::Feature::Surface_variation Surface_variation;
typedef Classification::Feature::Vertical_dispersion
<GeomTraits, PointRange, PointMap> Dispersion;
typedef Classification::Feature::Verticality
<GeomTraits> Verticality;
typedef typename Classification::RGB_Color RGB_Color;
/// \endcond
private:
struct Scale
{
Neighborhood* neighborhood;
Planimetric_grid* grid;
Local_eigen_analysis* eigen;
float voxel_size;
Scale (const PointRange& input, PointMap point_map,
const Iso_cuboid_3& bbox, float voxel_size,
Planimetric_grid* lower_grid = NULL)
: voxel_size (voxel_size)
{
CGAL::Real_timer t;
t.start();
if (voxel_size < 0.)
neighborhood = new Neighborhood (input, point_map);
else
neighborhood = new Neighborhood (input, point_map, voxel_size);
t.stop();
if (voxel_size < 0.)
CGAL_CLASSIFICATION_CERR << "Neighborhood computed in " << t.time() << " second(s)" << std::endl;
else
CGAL_CLASSIFICATION_CERR << "Neighborhood with voxel size " << voxel_size
<< " computed in " << t.time() << " second(s)" << std::endl;
t.reset();
t.start();
eigen = new Local_eigen_analysis
(input, point_map, neighborhood->k_neighbor_query(6), ConcurrencyTag(), DiagonalizeTraits());
float range = eigen->mean_range();
if (this->voxel_size < 0)
this->voxel_size = range;
t.stop();
CGAL_CLASSIFICATION_CERR << "Eigen values computed in " << t.time() << " second(s)" << std::endl;
CGAL_CLASSIFICATION_CERR << "Range = " << range << std::endl;
t.reset();
t.start();
if (lower_grid == NULL)
grid = new Planimetric_grid (input, point_map, bbox, this->voxel_size);
else
grid = new Planimetric_grid(lower_grid);
t.stop();
CGAL_CLASSIFICATION_CERR << "Planimetric grid computed in " << t.time() << " second(s)" << std::endl;
t.reset();
}
~Scale()
{
if (neighborhood != NULL)
delete neighborhood;
if (grid != NULL)
delete grid;
delete eigen;
}
void reduce_memory_footprint(bool delete_neighborhood)
{
delete grid;
grid = NULL;
if (delete_neighborhood)
{
delete neighborhood;
neighborhood = NULL;
}
}
float grid_resolution() const { return voxel_size; }
float radius_neighbors() const { return voxel_size * 5; }
float radius_dtm() const { return voxel_size * 100; }
};
Iso_cuboid_3 m_bbox;
std::vector<Scale*> m_scales;
#ifdef CGAL_LINKED_WITH_TBB
tbb::task_group* m_tasks;
#endif
struct Feature_adder
{
mutable Point_set_feature_generator* generator;
std::size_t scale;
Feature_adder (Point_set_feature_generator* generator, std::size_t scale)
: generator (generator), scale (scale) { }
virtual ~Feature_adder() { }
virtual void operator()() const = 0;
};
friend Feature_adder;
const PointRange& m_input;
PointMap m_point_map;
std::vector<Feature_adder*> m_adders;
Feature_set* m_features;
public:
/*!
\brief Generates all possible features from an input range.
The size of the smallest scale is automatically estimated using a
method equivalent to `CGAL::compute_average_spacing()` using 6
neighbors. The data structures needed (`Neighborhood`,
`Planimetric_grid` and `Local_eigen_analysis`) are computed at
`nb_scales` recursively larger scales. At each scale, the
following features are generated:
- `CGAL::Classification::Feature::Anisotropy`
- `CGAL::Classification::Feature::Distance_to_plane`
- `CGAL::Classification::Feature::Eigentropy`
- `CGAL::Classification::Feature::Elevation`
- `CGAL::Classification::Feature::Linearity`
- `CGAL::Classification::Feature::Omnivariance`
- `CGAL::Classification::Feature::Planarity`
- `CGAL::Classification::Feature::Sphericity`
- `CGAL::Classification::Feature::Sum_eigenvalues`
- `CGAL::Classification::Feature::Surface_variation`
- `CGAL::Classification::Feature::Vertical_dispersion`
- The version of `CGAL::Classification::Feature::Verticality` based on eigenvalues
If normal vectors are provided (if `VectorMap` is different from
`CGAL::Default`), the following feature is generated at each
scale:
- The version of `CGAL::Classification::Feature::Verticality` based on normal vectors
If colors are provided (if `ColorMap` is different from
`CGAL::Default`), the following features are generated at each
scale:
- 9 features `CGAL::Classification::Feature::Hsv` on
channel 0 (hue) with mean ranging from 0° to 360° and standard
deviation of 22.5.
- 5 features `CGAL::Classification::Feature::Hsv` on
channel 1 (saturation) with mean ranging from 0 to 100 and standard
deviation of 12.5.
- 5 features `CGAL::Classification::Feature::Hsv` on channel 2
(value) with mean ranging from 0 to 100 and standard deviation
of 12.5.
If echo numbers are provided (if `EchoMap` is different from
`CGAL::Default`), the following feature is computed at each
scale:
- `CGAL::Classification::Feature::Echo_scatter`
\tparam VectorMap model of `ReadablePropertyMap` whose key type is
the value type of the iterator of `PointRange` and value type is
`GeomTraits::Vector_3`.
\tparam ColorMap model of `ReadablePropertyMap` whose key type is
the value type of the iterator of `PointRange` and value type is
`CGAL::Classification::RGB_Color`.
\tparam EchoMap model of `ReadablePropertyMap` whose key type is
the value type of the iterator of `PointRange` and value type is
`std::size_t`.
\param features the feature set where the features are instantiated.
\param input point range.
\param point_map property map to access the input points.
\param nb_scales number of scales to compute.
\param normal_map property map to access the normal vectors of the input points (if any).
\param color_map property map to access the colors of the input points (if any).
\param echo_map property map to access the echo values of the input points (if any).
*/
template <typename VectorMap = Default,
typename ColorMap = Default,
typename EchoMap = Default>
Point_set_feature_generator(Feature_set& features,
const PointRange& input,
PointMap point_map,
std::size_t nb_scales,
VectorMap normal_map = VectorMap(),
ColorMap color_map = ColorMap(),
EchoMap echo_map = EchoMap())
: m_input (input), m_point_map (point_map), m_features (&features)
{
m_bbox = CGAL::bounding_box
(boost::make_transform_iterator (m_input.begin(), CGAL::Property_map_to_unary_function<PointMap>(m_point_map)),
boost::make_transform_iterator (m_input.end(), CGAL::Property_map_to_unary_function<PointMap>(m_point_map)));
typedef typename Default::Get<VectorMap, typename GeomTraits::Vector_3 >::type
Vmap;
typedef typename Default::Get<ColorMap, RGB_Color >::type
Cmap;
typedef typename Default::Get<EchoMap, std::size_t >::type
Emap;
generate_features_impl (nb_scales,
get_parameter<Vmap>(normal_map),
get_parameter<Cmap>(color_map),
get_parameter<Emap>(echo_map));
}
/// \cond SKIP_IN_MANUAL
virtual ~Point_set_feature_generator()
{
clear();
}
void reduce_memory_footprint()
{
for (std::size_t i = 0; i < m_scales.size(); ++ i)
{
m_scales[i]->reduce_memory_footprint(i > 0);
}
}
/// \endcond
/*!
\brief Returns the bounding box of the input point set.
*/
const Iso_cuboid_3& bbox() const { return m_bbox; }
/*!
\brief Returns the neighborhood structure at scale `scale`.
*/
const Neighborhood& neighborhood(std::size_t scale = 0) const { return (*m_scales[scale]->neighborhood); }
/*!
\brief Returns the planimetric grid structure at scale `scale`.
*/
const Planimetric_grid& grid(std::size_t scale = 0) const { return *(m_scales[scale]->grid); }
/*!
\brief Returns the local eigen analysis structure at scale `scale`.
*/
const Local_eigen_analysis& eigen(std::size_t scale = 0) const { return *(m_scales[scale]->eigen); }
/*!
\brief Returns the number of scales that were computed.
*/
std::size_t number_of_scales() const { return m_scales.size(); }
/*!
\brief Returns the grid resolution at scale `scale`. This
resolution is the length and width of a cell of the
`Planimetric_grid` defined at this scale.
*/
float grid_resolution(std::size_t scale = 0) const { return m_scales[scale]->grid_resolution(); }
/*!
\brief Returns the radius used for neighborhood queries at scale
`scale`. This radius is the smallest radius that is relevant from
a geometric point of view at this scale (that is to say that
encloses a few cells of `Planimetric_grid`).
*/
float radius_neighbors(std::size_t scale = 0) const { return m_scales[scale]->radius_neighbors(); }
/*!
\brief Returns the radius used for digital terrain modeling at
scale `scale`. This radius represents the minimum size of a
building at this scale.
*/
float radius_dtm(std::size_t scale = 0) const { return m_scales[scale]->radius_dtm(); }
private:
void clear()
{
for (std::size_t i = 0; i < m_scales.size(); ++ i)
delete m_scales[i];
m_scales.clear();
}
void generate_point_based_features ()
{
generate_multiscale_feature_variant_0<Anisotropy> ();
generate_multiscale_feature_variant_0<Eigentropy> ();
generate_multiscale_feature_variant_0<Linearity> ();
generate_multiscale_feature_variant_0<Omnivariance> ();
generate_multiscale_feature_variant_0<Planarity> ();
generate_multiscale_feature_variant_0<Sphericity> ();
generate_multiscale_feature_variant_0<Sum_eigen> ();
generate_multiscale_feature_variant_0<Surface_variation> ();
generate_multiscale_feature_variant_1<Distance_to_plane> ();
generate_multiscale_feature_variant_2<Dispersion> ();
generate_multiscale_feature_variant_3<Elevation> ();
}
template <typename FeatureAdder>
void launch_feature_computation (FeatureAdder* adder)
{
m_adders.push_back (adder);
#ifndef CGAL_LINKED_WITH_TBB
CGAL_static_assertion_msg (!(boost::is_convertible<ConcurrencyTag, Parallel_tag>::value),
"Parallel_tag is enabled but TBB is unavailable.");
#else
if (boost::is_convertible<ConcurrencyTag,Parallel_tag>::value)
{
m_tasks->run (*adder);
}
else
#endif
{
(*adder)();
}
}
template <typename VectorMap>
struct Feature_adder_verticality : public Feature_adder
{
using Feature_adder::generator;
using Feature_adder::scale;
VectorMap normal_map;
// TODO!
Feature_adder_verticality (Point_set_feature_generator* generator, VectorMap normal_map, std::size_t scale)
: Feature_adder (generator, scale), normal_map (normal_map) { }
void operator() () const
{
Feature_handle fh = generator->m_features->template add<Verticality> (generator->m_input, normal_map);
std::ostringstream oss;
oss << fh->name() << "_" << scale;
fh->set_name (oss.str());
}
};
template <typename VectorMap>
void generate_normal_based_features(VectorMap normal_map)
{
launch_feature_computation (new Feature_adder_verticality<VectorMap> (this, normal_map, 0));
}
void generate_normal_based_features(const CGAL::Default_property_map<Iterator, typename GeomTraits::Vector_3>&)
{
generate_multiscale_feature_variant_0<Verticality> ();
}
template <typename ColorMap>
struct Feature_adder_color : public Feature_adder
{
typedef Classification::Feature::Hsv<GeomTraits, PointRange, ColorMap> Hsv;
using Feature_adder::generator;
using Feature_adder::scale;
ColorMap color_map;
std::size_t channel;
float mean;
float sd;
// TODO!
Feature_adder_color (Point_set_feature_generator* generator, ColorMap color_map, std::size_t scale,
std::size_t channel, float mean, float sd)
: Feature_adder (generator, scale), color_map (color_map),
channel (channel), mean (mean), sd (sd) { }
void operator() () const
{
Feature_handle fh = generator->m_features->template add<Hsv> (generator->m_input, color_map,
(typename Hsv::Channel)(channel), mean, sd);
std::ostringstream oss;
oss << fh->name() << "_" << scale;
fh->set_name (oss.str());
}
};
template <typename ColorMap>
void generate_color_based_features(ColorMap color_map)
{
for (std::size_t i = 0; i <= 8; ++ i)
launch_feature_computation (new Feature_adder_color<ColorMap> (this, color_map, 0,
0, 45 * i, 22.5));
for (std::size_t i = 0; i <= 4; ++ i)
launch_feature_computation (new Feature_adder_color<ColorMap> (this, color_map, 0,
1, 25 * i, 12.5));
for (std::size_t i = 0; i <= 4; ++ i)
launch_feature_computation (new Feature_adder_color<ColorMap> (this, color_map, 0,
2, 25 * i, 12.5));
}
void generate_color_based_features(const CGAL::Default_property_map<Iterator, RGB_Color>&)
{
}
template <typename EchoMap>
struct Feature_adder_echo : public Feature_adder
{
typedef Classification::Feature::Echo_scatter<GeomTraits, PointRange, PointMap, EchoMap> Echo_scatter;
using Feature_adder::generator;
using Feature_adder::scale;
EchoMap echo_map;
// TODO!
Feature_adder_echo (Point_set_feature_generator* generator, EchoMap echo_map, std::size_t scale)
: Feature_adder (generator, scale), echo_map (echo_map) { }
void operator() () const
{
Feature_handle fh = generator->m_features->template add<Echo_scatter> (generator->m_input,
echo_map,
generator->grid(scale),
generator->radius_neighbors(scale));
std::ostringstream oss;
oss << fh->name() << "_" << scale;
fh->set_name (oss.str());
}
};
template <typename EchoMap>
void generate_echo_based_features(EchoMap echo_map)
{
for (std::size_t i = 0; i < m_scales.size(); ++ i)
launch_feature_computation (new Feature_adder_echo<EchoMap> (this, echo_map, i));
}
void generate_echo_based_features(const CGAL::Default_property_map<Iterator, std::size_t>&)
{
}
template <typename T>
const T& get_parameter (const T& t)
{
return t;
}
template <typename T>
Default_property_map<Iterator, T>
get_parameter (const Default&)
{
return Default_property_map<Iterator, T>();
}
template<typename VectorMap, typename ColorMap, typename EchoMap>
void generate_features_impl (std::size_t nb_scales,
VectorMap normal_map,
ColorMap color_map,
EchoMap echo_map)
{
CGAL::Real_timer t; t.start();
m_scales.reserve (nb_scales);
float voxel_size = -1;
// voxel_size = 0.05; // WARNING: do not keep (-1 is the right value)
m_scales.push_back (new Scale (m_input, m_point_map, m_bbox, voxel_size));
voxel_size = m_scales[0]->grid_resolution();
for (std::size_t i = 1; i < nb_scales; ++ i)
{
voxel_size *= 2;
m_scales.push_back (new Scale (m_input, m_point_map, m_bbox, voxel_size, m_scales[i-1]->grid));
}
t.stop();
CGAL_CLASSIFICATION_CERR << "Scales computed in " << t.time() << " second(s)" << std::endl;
t.reset();
t.start();
#ifdef CGAL_LINKED_WITH_TBB
m_tasks = new tbb::task_group;
#endif
generate_point_based_features ();
generate_normal_based_features (normal_map);
generate_color_based_features (color_map);
generate_echo_based_features (echo_map);
#ifdef CGAL_LINKED_WITH_TBB
m_tasks->wait();
delete m_tasks;
#endif
t.stop();
CGAL_CLASSIFICATION_CERR << "Features computed in " << t.time() << " second(s)" << std::endl;
for (std::size_t i = 0; i < m_adders.size(); ++ i)
delete m_adders[i];
}
template <typename Feature_type>
struct Feature_adder_variant_0 : public Feature_adder
{
using Feature_adder::generator;
using Feature_adder::scale;
Feature_adder_variant_0 (Point_set_feature_generator* generator, std::size_t scale)
: Feature_adder (generator, scale) { }
void operator() () const
{
Feature_handle fh = generator->m_features->template add<Feature_type> (generator->m_input, generator->eigen(scale));
std::ostringstream oss;
oss << fh->name() << "_" << scale;
fh->set_name (oss.str());
}
};
template <typename Feature_type>
void generate_multiscale_feature_variant_0 ()
{
for (std::size_t i = 0; i < m_scales.size(); ++ i)
launch_feature_computation (new Feature_adder_variant_0<Feature_type> (this, i));
}
template <typename Feature_type>
struct Feature_adder_variant_1 : public Feature_adder
{
using Feature_adder::generator;
using Feature_adder::scale;
PointMap point_map;
// TODO!
Feature_adder_variant_1 (Point_set_feature_generator* generator, PointMap point_map, std::size_t scale)
: Feature_adder (generator, scale), point_map (point_map) { }
void operator() () const
{
Feature_handle fh = generator->m_features->template add<Feature_type> (generator->m_input, point_map,
generator->eigen(scale));
std::ostringstream oss;
oss << fh->name() << "_" << scale;
fh->set_name (oss.str());
}
};
template <typename Feature_type>
void generate_multiscale_feature_variant_1 ()
{
for (std::size_t i = 0; i < m_scales.size(); ++ i)
launch_feature_computation (new Feature_adder_variant_1<Feature_type> (this, m_point_map, i));
}
template <typename Feature_type>
struct Feature_adder_variant_2 : public Feature_adder
{
using Feature_adder::generator;
using Feature_adder::scale;
PointMap point_map;
// TODO!
Feature_adder_variant_2 (Point_set_feature_generator* generator, PointMap point_map, std::size_t scale)
: Feature_adder (generator, scale), point_map (point_map) { }
void operator() () const
{
Feature_handle fh = generator->m_features->template add<Feature_type>
(generator->m_input, point_map,
generator->grid(scale),
generator->radius_neighbors(scale));
std::ostringstream oss;
oss << fh->name() << "_" << scale;
fh->set_name (oss.str());
}
};
template <typename Feature_type>
void generate_multiscale_feature_variant_2 ()
{
for (std::size_t i = 0; i < m_scales.size(); ++ i)
launch_feature_computation (new Feature_adder_variant_2<Feature_type> (this, m_point_map, i));
}
template <typename Feature_type>
struct Feature_adder_variant_3 : public Feature_adder
{
using Feature_adder::generator;
using Feature_adder::scale;
PointMap point_map;
// TODO!
Feature_adder_variant_3 (Point_set_feature_generator* generator, PointMap point_map, std::size_t scale)
: Feature_adder (generator, scale), point_map (point_map) { }
void operator() () const
{
Feature_handle fh = generator->m_features->template add<Feature_type> (generator->m_input,
point_map,
generator->grid(scale),
generator->radius_dtm(scale));
std::ostringstream oss;
oss << fh->name() << "_" << scale;
fh->set_name (oss.str());
}
};
template <typename Feature_type>
void generate_multiscale_feature_variant_3 ()
{
for (std::size_t i = 0; i < m_scales.size(); ++ i)
launch_feature_computation (new Feature_adder_variant_3<Feature_type> (this, m_point_map, i));
}
};
} // namespace Classification
} // namespace CGAL
#endif // CGAL_CLASSIFICATION_POINT_SET_FEATURE_GENERATOR_H