mirror of https://github.com/CGAL/cgal
783 lines
26 KiB
C++
783 lines
26 KiB
C++
// Copyright (c) 2007-09 INRIA (France).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org); you may redistribute it under
|
|
// the terms of the Q Public License version 1.0.
|
|
// See the file LICENSE.QPL distributed with CGAL.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
//
|
|
// Author(s) : Laurent Saboret, Pierre Alliez
|
|
|
|
#ifndef CGAL_POISSON_RECONSTRUCTION_FUNCTION_H
|
|
#define CGAL_POISSON_RECONSTRUCTION_FUNCTION_H
|
|
|
|
#include <vector>
|
|
#include <deque>
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
|
|
#include <CGAL/trace.h>
|
|
#include <CGAL/Reconstruction_triangulation_3.h>
|
|
#include <CGAL/spatial_sort.h>
|
|
#include <CGAL/Taucs_solver_traits.h>
|
|
#include <CGAL/centroid.h>
|
|
#include <CGAL/property_map.h>
|
|
#include <CGAL/surface_reconstruction_points_assertions.h>
|
|
#include <CGAL/Memory_sizer.h>
|
|
#include <CGAL/Peak_memory_sizer.h>
|
|
#include <CGAL/poisson_refine_triangulation.h>
|
|
#include <CGAL/Robust_circumcenter_filtered_traits_3.h>
|
|
|
|
#include <boost/shared_ptr.hpp>
|
|
|
|
namespace CGAL {
|
|
|
|
|
|
/// Given a set of 3D points with oriented normals sampled on the boundary of a 3D solid,
|
|
/// the Poisson Surface Reconstruction method [Kazhdan06] solves for an approximate indicator function
|
|
/// of the inferred solid, whose gradient best matches the input normals.
|
|
/// The output scalar function, represented in an adaptive octree, is then iso-contoured
|
|
/// using an adaptive marching cubes.
|
|
///
|
|
/// Poisson_reconstruction_function implements a variant of this algorithm which solves
|
|
/// for a piecewise linear function on a 3D Delaunay triangulation instead of an adaptive octree.
|
|
///
|
|
/// @heading Is Model for the Concepts:
|
|
/// Model of the 'ImplicitFunction' concept.
|
|
///
|
|
/// @heading Parameters:
|
|
/// @param Gt Geometric traits class.
|
|
|
|
template <class Gt>
|
|
class Poisson_reconstruction_function
|
|
{
|
|
// Public types
|
|
public:
|
|
|
|
typedef Gt Geom_traits; ///< Geometric traits class
|
|
|
|
// Geometric types
|
|
typedef typename Geom_traits::FT FT; ///< typedef to Geom_traits::FT
|
|
typedef typename Geom_traits::Point_3 Point; ///< typedef to Geom_traits::Point_3
|
|
typedef typename Geom_traits::Vector_3 Vector; ///< typedef to Geom_traits::Vector_3
|
|
typedef typename Geom_traits::Sphere_3 Sphere; ///< typedef to Geom_traits::Sphere_3
|
|
|
|
// Private types
|
|
private:
|
|
|
|
/// Internal 3D triangulation, of type Reconstruction_triangulation_3.
|
|
// Note: poisson_refine_triangulation() requires a robust circumcenter computation.
|
|
typedef Reconstruction_triangulation_3<Robust_circumcenter_filtered_traits_3<Gt> >
|
|
Triangulation;
|
|
|
|
// Repeat Triangulation types
|
|
typedef typename Triangulation::Triangulation_data_structure Triangulation_data_structure;
|
|
typedef typename Geom_traits::Ray_3 Ray;
|
|
typedef typename Geom_traits::Plane_3 Plane;
|
|
typedef typename Geom_traits::Segment_3 Segment;
|
|
typedef typename Geom_traits::Triangle_3 Triangle;
|
|
typedef typename Geom_traits::Tetrahedron_3 Tetrahedron;
|
|
typedef typename Triangulation::Cell_handle Cell_handle;
|
|
typedef typename Triangulation::Vertex_handle Vertex_handle;
|
|
typedef typename Triangulation::Cell Cell;
|
|
typedef typename Triangulation::Vertex Vertex;
|
|
typedef typename Triangulation::Facet Facet;
|
|
typedef typename Triangulation::Edge Edge;
|
|
typedef typename Triangulation::Cell_circulator Cell_circulator;
|
|
typedef typename Triangulation::Facet_circulator Facet_circulator;
|
|
typedef typename Triangulation::Cell_iterator Cell_iterator;
|
|
typedef typename Triangulation::Facet_iterator Facet_iterator;
|
|
typedef typename Triangulation::Edge_iterator Edge_iterator;
|
|
typedef typename Triangulation::Vertex_iterator Vertex_iterator;
|
|
typedef typename Triangulation::Point_iterator Point_iterator;
|
|
typedef typename Triangulation::Finite_vertices_iterator Finite_vertices_iterator;
|
|
typedef typename Triangulation::Finite_cells_iterator Finite_cells_iterator;
|
|
typedef typename Triangulation::Finite_facets_iterator Finite_facets_iterator;
|
|
typedef typename Triangulation::Finite_edges_iterator Finite_edges_iterator;
|
|
typedef typename Triangulation::All_cells_iterator All_cells_iterator;
|
|
typedef typename Triangulation::Locate_type Locate_type;
|
|
|
|
// Data members.
|
|
// Warning: the Surface Mesh Generation package makes copies of implicit functions,
|
|
// thus this class must be lightweight and stateless.
|
|
private:
|
|
|
|
// operator() is pre-computed on vertices of *m_tr by solving
|
|
// the Poisson equation Laplacian(f) = divergent(normals field).
|
|
boost::shared_ptr<Triangulation> m_tr;
|
|
|
|
// contouring and meshing
|
|
Point m_sink; // Point with the minimum value of operator()
|
|
mutable Cell_handle m_hint; // last cell found = hint for next search
|
|
|
|
// Public methods
|
|
public:
|
|
|
|
/// Creates a Poisson implicit function from the [first, beyond) range of points.
|
|
///
|
|
/// @commentheading Template Parameters:
|
|
/// @param InputIterator iterator over input points.
|
|
/// @param PointPMap is a model of boost::ReadablePropertyMap with a value_type = Point_3.
|
|
/// It can be omitted if InputIterator value_type is convertible to Point_3.
|
|
/// @param NormalPMap is a model of boost::ReadablePropertyMap with a value_type = Vector_3.
|
|
|
|
// This variant requires all parameters.
|
|
template <typename InputIterator,
|
|
typename PointPMap,
|
|
typename NormalPMap
|
|
>
|
|
Poisson_reconstruction_function(
|
|
InputIterator first, ///< iterator over the first input point.
|
|
InputIterator beyond, ///< past-the-end iterator over the input points.
|
|
PointPMap point_pmap, ///< property map to access the position of an input point.
|
|
NormalPMap normal_pmap) ///< property map to access the *oriented* normal of an input point.
|
|
: m_tr(new Triangulation)
|
|
{
|
|
CGAL::Timer task_timer; task_timer.start();
|
|
CGAL_TRACE_STREAM << "Creates Poisson triangulation...\n";
|
|
|
|
// Inserts points in triangulation
|
|
m_tr->insert(
|
|
first,beyond,
|
|
point_pmap,
|
|
normal_pmap);
|
|
|
|
// Prints status
|
|
CGAL_TRACE_STREAM << "Creates Poisson triangulation: " << task_timer.time() << " seconds, "
|
|
<< (CGAL::Memory_sizer().virtual_size()>>20) << " Mb allocated"
|
|
<< std::endl;
|
|
}
|
|
|
|
/// @cond SKIP_IN_MANUAL
|
|
// This variant creates a default point property map = Dereference_property_map.
|
|
template <typename InputIterator,
|
|
typename NormalPMap
|
|
>
|
|
Poisson_reconstruction_function(
|
|
InputIterator first, ///< iterator over the first input point.
|
|
InputIterator beyond, ///< past-the-end iterator over the input points.
|
|
NormalPMap normal_pmap) ///< property map to access the *oriented* normal of an input point.
|
|
: m_tr(new Triangulation)
|
|
{
|
|
CGAL::Timer task_timer; task_timer.start();
|
|
CGAL_TRACE_STREAM << "Creates Poisson triangulation...\n";
|
|
|
|
// Inserts points in triangulation
|
|
m_tr->insert(
|
|
first,beyond,
|
|
normal_pmap);
|
|
|
|
// Prints status
|
|
CGAL_TRACE_STREAM << "Creates Poisson triangulation: " << task_timer.time() << " seconds, "
|
|
<< (CGAL::Memory_sizer().virtual_size()>>20) << " Mb allocated"
|
|
<< std::endl;
|
|
}
|
|
/// @endcond
|
|
|
|
/// Returns a sphere bounding the inferred surface.
|
|
Sphere bounding_sphere() const
|
|
{
|
|
return m_tr->input_points_bounding_sphere();
|
|
}
|
|
|
|
/// The function compute_implicit_function() must be called
|
|
/// after the insertion of oriented points.
|
|
/// It computes the piecewise linear scalar function operator() by:
|
|
/// - applying Delaunay refinement,
|
|
/// - solving for operator() at each vertex of the triangulation with a sparse linear solver,
|
|
/// - and shifting and orienting operator() such that it is 0 at all input points and negative inside the inferred surface.
|
|
///
|
|
/// @commentheading Template parameters:
|
|
/// @param SparseLinearAlgebraTraits_d Symmetric definite positive sparse linear solver.
|
|
/// The default solver is TAUCS Multifrontal Supernodal Cholesky Factorization.
|
|
///
|
|
/// @return false if the linear solver fails.
|
|
|
|
// This variant requires all parameters.
|
|
template <class SparseLinearAlgebraTraits_d>
|
|
bool compute_implicit_function(
|
|
SparseLinearAlgebraTraits_d solver = SparseLinearAlgebraTraits_d()) ///< sparse linear solver
|
|
{
|
|
CGAL::Timer task_timer; task_timer.start();
|
|
CGAL_TRACE_STREAM << "Delaunay refinement...\n";
|
|
|
|
// Delaunay refinement
|
|
const FT radius_edge_ratio_bound = 2.5;
|
|
const unsigned int max_vertices = (unsigned int)1e7; // max 10M vertices
|
|
const FT enlarge_ratio = 1.5;
|
|
const FT radius = sqrt(bounding_sphere().squared_radius()); // get triangulation's radius
|
|
const FT cell_radius_bound = radius/5.; // large
|
|
unsigned int nb_vertices_added = delaunay_refinement(radius_edge_ratio_bound,cell_radius_bound,max_vertices,enlarge_ratio);
|
|
|
|
// Prints status
|
|
CGAL_TRACE_STREAM << "Delaunay refinement: " << "added " << nb_vertices_added << " Steiner points, "
|
|
<< task_timer.time() << " seconds, "
|
|
<< (CGAL::Memory_sizer().virtual_size()>>20) << " Mb allocated"
|
|
<< std::endl;
|
|
task_timer.reset();
|
|
|
|
CGAL_TRACE_STREAM << "Solve Poisson equation with normalized divergence...\n";
|
|
|
|
// Computes the Poisson indicator function operator()
|
|
// at each vertex of the triangulation.
|
|
double lambda = 0.1;
|
|
if ( ! solve_poisson(solver, lambda) )
|
|
{
|
|
std::cerr << "Error: cannot solve Poisson equation" << std::endl;
|
|
return false;
|
|
}
|
|
|
|
// Shift and orient operator() such that:
|
|
// - operator() = 0 on the input points,
|
|
// - operator() < 0 inside the surface.
|
|
set_contouring_value(median_value_at_input_vertices());
|
|
|
|
// Prints status
|
|
CGAL_TRACE_STREAM << "Solve Poisson equation: " << task_timer.time() << " seconds, "
|
|
<< (CGAL::Memory_sizer().virtual_size()>>20) << " Mb allocated"
|
|
<< std::endl;
|
|
task_timer.reset();
|
|
|
|
return true;
|
|
}
|
|
|
|
/// @cond SKIP_IN_MANUAL
|
|
// This variant provides the default sparse linear traits class = Taucs_symmetric_solver_traits.
|
|
bool compute_implicit_function()
|
|
{
|
|
return compute_implicit_function< Taucs_symmetric_solver_traits<double> >();
|
|
}
|
|
/// @endcond
|
|
|
|
/// 'ImplicitFunction' interface: evaluates the implicit function at a given 3D query point.
|
|
FT operator()(const Point& p) const
|
|
{
|
|
m_hint = m_tr->locate(p,m_hint);
|
|
|
|
if(m_hint == NULL)
|
|
return 1e38;
|
|
|
|
if(m_tr->is_infinite(m_hint))
|
|
return 1e38;
|
|
|
|
FT a,b,c,d;
|
|
barycentric_coordinates(p,m_hint,a,b,c,d);
|
|
return a * m_hint->vertex(0)->f() +
|
|
b * m_hint->vertex(1)->f() +
|
|
c * m_hint->vertex(2)->f() +
|
|
d * m_hint->vertex(3)->f();
|
|
}
|
|
|
|
/// Returns a point located inside the inferred surface.
|
|
Point get_inner_point() const
|
|
{
|
|
// Gets point / the implicit function is minimum
|
|
return m_sink;
|
|
}
|
|
|
|
// Private methods:
|
|
private:
|
|
|
|
/// Delaunay refinement (break bad tetrahedra, where
|
|
/// bad means badly shaped or too big). The normal of
|
|
/// Steiner points is set to zero.
|
|
/// Returns the number of vertices inserted.
|
|
unsigned int delaunay_refinement(FT radius_edge_ratio_bound, ///< radius edge ratio bound (ignored if zero)
|
|
FT cell_radius_bound, ///< cell radius bound (ignored if zero)
|
|
unsigned int max_vertices, ///< number of vertices bound
|
|
FT enlarge_ratio) ///< bounding box enlarge ratio
|
|
{
|
|
CGAL_TRACE("Calls delaunay_refinement(radius_edge_ratio_bound=%lf, cell_radius_bound=%lf, max_vertices=%u, enlarge_ratio=%lf)\n",
|
|
radius_edge_ratio_bound, cell_radius_bound, max_vertices, enlarge_ratio);
|
|
|
|
Sphere elarged_bsphere = enlarged_bounding_sphere(enlarge_ratio);
|
|
unsigned int nb_vertices_added = poisson_refine_triangulation(*m_tr,radius_edge_ratio_bound,cell_radius_bound,max_vertices,elarged_bsphere);
|
|
|
|
CGAL_TRACE("End of delaunay_refinement()\n");
|
|
|
|
return nb_vertices_added;
|
|
}
|
|
|
|
/// Poisson reconstruction.
|
|
/// Returns false on error.
|
|
///
|
|
/// @commentheading Template parameters:
|
|
/// @param SparseLinearAlgebraTraits_d Symmetric definite positive sparse linear solver.
|
|
template <class SparseLinearAlgebraTraits_d>
|
|
bool solve_poisson(
|
|
SparseLinearAlgebraTraits_d solver, ///< sparse linear solver
|
|
double lambda)
|
|
{
|
|
CGAL_TRACE("Calls solve_poisson()\n");
|
|
|
|
double time_init = clock();
|
|
|
|
double duration_assembly = 0.0;
|
|
double duration_solve = 0.0;
|
|
|
|
long old_max_memory = CGAL::Peak_memory_sizer().peak_virtual_size();
|
|
|
|
CGAL_TRACE(" %ld Mb allocated\n", long(CGAL::Memory_sizer().virtual_size()>>20));
|
|
CGAL_TRACE(" Creates matrix...\n");
|
|
|
|
// get #variables
|
|
unsigned int nb_variables = m_tr->index_unconstrained_vertices();
|
|
|
|
// at least one vertex must be constrained
|
|
if(nb_variables == m_tr->number_of_vertices())
|
|
{
|
|
constrain_one_vertex_on_convex_hull();
|
|
nb_variables = m_tr->index_unconstrained_vertices();
|
|
}
|
|
|
|
// Assemble linear system A*X=B
|
|
typename SparseLinearAlgebraTraits_d::Matrix A(nb_variables); // matrix is symmetric definite positive
|
|
typename SparseLinearAlgebraTraits_d::Vector X(nb_variables), B(nb_variables);
|
|
|
|
Finite_vertices_iterator v;
|
|
for(v = m_tr->finite_vertices_begin();
|
|
v != m_tr->finite_vertices_end();
|
|
v++)
|
|
{
|
|
if(!v->constrained())
|
|
{
|
|
B[v->index()] = div_normalized(v); // rhs -> divergent
|
|
assemble_poisson_row<SparseLinearAlgebraTraits_d>(A,v,B,lambda);
|
|
}
|
|
}
|
|
|
|
duration_assembly = (clock() - time_init)/CLOCKS_PER_SEC;
|
|
CGAL_TRACE(" Creates matrix: done (%.2lf s)\n", duration_assembly);
|
|
|
|
CGAL_TRACE(" %ld Mb allocated\n", long(CGAL::Memory_sizer().virtual_size()>>20));
|
|
CGAL_TRACE(" Solve sparse linear system...\n");
|
|
|
|
// Solve "A*X = B". On success, solution is (1/D) * X.
|
|
time_init = clock();
|
|
double D;
|
|
if(!solver.linear_solver(A, B, X, D))
|
|
return false;
|
|
CGAL_surface_reconstruction_points_assertion(D == 1.0);
|
|
duration_solve = (clock() - time_init)/CLOCKS_PER_SEC;
|
|
|
|
// Prints peak memory (Windows only)
|
|
long max_memory = CGAL::Peak_memory_sizer().peak_virtual_size();
|
|
if (max_memory <= 0) { // if peak_virtual_size() not implemented
|
|
CGAL_TRACE(" Sorry. Cannot get solver max allocation on this system.\n");
|
|
} else {
|
|
if (max_memory > old_max_memory) {
|
|
CGAL_TRACE(" Max allocation in solver = %ld Mb\n", max_memory>>20);
|
|
} else {
|
|
CGAL_TRACE(" Sorry. Failed to get solver max allocation.\n");
|
|
CGAL_TRACE(" Max allocation since application start = %ld Mb\n", max_memory>>20);
|
|
}
|
|
}
|
|
|
|
CGAL_TRACE(" Solve sparse linear system: done (%.2lf s)\n", duration_solve);
|
|
|
|
// copy function's values to vertices
|
|
unsigned int index = 0;
|
|
for (v = m_tr->finite_vertices_begin(); v != m_tr->finite_vertices_end(); v++)
|
|
if(!v->constrained())
|
|
v->f() = X[index++];
|
|
|
|
CGAL_TRACE(" %ld Mb allocated\n", long(CGAL::Memory_sizer().virtual_size()>>20));
|
|
CGAL_TRACE("End of solve_poisson()\n");
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Shift and orient the implicit function such that:
|
|
/// - the implicit function = 0 for points / f() = contouring_value,
|
|
/// - the implicit function < 0 inside the surface.
|
|
///
|
|
/// Returns the minimum value of the implicit function.
|
|
FT set_contouring_value(FT contouring_value)
|
|
{
|
|
// median value set to 0.0
|
|
shift_f(-contouring_value);
|
|
|
|
// check value on convex hull (should be positive)
|
|
Vertex_handle v = any_vertex_on_convex_hull();
|
|
if(v->f() < 0.0)
|
|
flip_f();
|
|
|
|
// Update m_sink
|
|
FT sink_value = find_sink();
|
|
return sink_value;
|
|
}
|
|
|
|
|
|
/// Gets median value of the implicit function over input vertices.
|
|
FT median_value_at_input_vertices() const
|
|
{
|
|
std::deque<FT> values;
|
|
Finite_vertices_iterator v;
|
|
for(v = m_tr->finite_vertices_begin();
|
|
v != m_tr->finite_vertices_end();
|
|
v++)
|
|
if(v->type() == Triangulation::INPUT)
|
|
values.push_back(v->f());
|
|
|
|
int size = values.size();
|
|
if(size == 0)
|
|
{
|
|
std::cerr << "Contouring: no input points\n";
|
|
return 0.0;
|
|
}
|
|
|
|
std::sort(values.begin(),values.end());
|
|
int index = size/2;
|
|
// return values[size/2];
|
|
return 0.5 * (values[index] + values[index+1]); // avoids singular cases
|
|
}
|
|
|
|
void barycentric_coordinates(const Point& p,
|
|
Cell_handle cell,
|
|
FT& a,
|
|
FT& b,
|
|
FT& c,
|
|
FT& d) const
|
|
{
|
|
const Point& pa = cell->vertex(0)->point();
|
|
const Point& pb = cell->vertex(1)->point();
|
|
const Point& pc = cell->vertex(2)->point();
|
|
const Point& pd = cell->vertex(3)->point();
|
|
|
|
FT v = volume(pa,pb,pc,pd);
|
|
a = std::fabs(volume(pb,pc,pd,p) / v);
|
|
b = std::fabs(volume(pa,pc,pd,p) / v);
|
|
c = std::fabs(volume(pb,pa,pd,p) / v);
|
|
d = std::fabs(volume(pb,pc,pa,p) / v);
|
|
}
|
|
|
|
FT find_sink()
|
|
{
|
|
m_sink = CGAL::ORIGIN;
|
|
FT min_f = 1e38;
|
|
Finite_vertices_iterator v;
|
|
for(v = m_tr->finite_vertices_begin();
|
|
v != m_tr->finite_vertices_end();
|
|
v++)
|
|
{
|
|
if(v->f() < min_f)
|
|
{
|
|
m_sink = v->point();
|
|
min_f = v->f();
|
|
}
|
|
}
|
|
return min_f;
|
|
}
|
|
|
|
void shift_f(const FT shift)
|
|
{
|
|
Finite_vertices_iterator v;
|
|
for(v = m_tr->finite_vertices_begin();
|
|
v != m_tr->finite_vertices_end();
|
|
v++)
|
|
v->f() += shift;
|
|
}
|
|
|
|
void flip_f()
|
|
{
|
|
Finite_vertices_iterator v;
|
|
for(v = m_tr->finite_vertices_begin();
|
|
v != m_tr->finite_vertices_end();
|
|
v++)
|
|
v->f() = -v->f();
|
|
}
|
|
|
|
Vertex_handle any_vertex_on_convex_hull()
|
|
{
|
|
// TODO: return NULL if none and assert
|
|
std::vector<Vertex_handle> vertices;
|
|
m_tr->incident_vertices(m_tr->infinite_vertex(),std::back_inserter(vertices));
|
|
typename std::vector<Vertex_handle>::iterator it = vertices.begin();
|
|
return *it;
|
|
}
|
|
|
|
void constrain_one_vertex_on_convex_hull(const FT value = 0.0)
|
|
{
|
|
Vertex_handle v = any_vertex_on_convex_hull();
|
|
v->constrained() = true;
|
|
v->f() = value;
|
|
}
|
|
|
|
// divergent
|
|
FT div_normalized(Vertex_handle v)
|
|
{
|
|
std::vector<Cell_handle> cells;
|
|
m_tr->incident_cells(v,std::back_inserter(cells));
|
|
if(cells.size() == 0)
|
|
return 0.0;
|
|
|
|
FT length = 100000;
|
|
int counter = 0;
|
|
FT div = 0.0;
|
|
typename std::vector<Cell_handle>::iterator it;
|
|
for(it = cells.begin(); it != cells.end(); it++)
|
|
{
|
|
Cell_handle cell = *it;
|
|
if(m_tr->is_infinite(cell))
|
|
continue;
|
|
|
|
// compute average normal per cell
|
|
Vector n = cell_normal(cell);
|
|
|
|
// zero normal - no need to compute anything else
|
|
if(n == CGAL::NULL_VECTOR)
|
|
continue;
|
|
|
|
// compute n'
|
|
int index = cell->index(v);
|
|
const Point& x = cell->vertex(index)->point();
|
|
const Point& a = cell->vertex((index+1)%4)->point();
|
|
const Point& b = cell->vertex((index+2)%4)->point();
|
|
const Point& c = cell->vertex((index+3)%4)->point();
|
|
Vector nn = (index%2==0) ? CGAL::cross_product(b-a,c-a) : CGAL::cross_product(c-a,b-a);
|
|
nn = nn / std::sqrt(nn*nn); // normalize
|
|
Vector p = a - x;
|
|
Vector q = b - x;
|
|
Vector r = c - x;
|
|
FT p_n = std::sqrt(p*p);
|
|
FT q_n = std::sqrt(q*q);
|
|
FT r_n = std::sqrt(r*r);
|
|
FT solid_angle = p*(CGAL::cross_product(q,r));
|
|
solid_angle = std::abs(solid_angle * 1.0 / (p_n*q_n*r_n + (p*q)*r_n + (q*r)*p_n + (r*p)*q_n));
|
|
Triangle face(a,b,c);
|
|
FT area = std::sqrt(face.squared_area());
|
|
length = std::sqrt((x-a)*(x-a)) + std::sqrt((x-b)*(x-b)) + std::sqrt((x-c)*(x-c));
|
|
counter++;
|
|
div += n * nn * area * 3 / length ;
|
|
}
|
|
return div;
|
|
}
|
|
|
|
Vector cell_normal(Cell_handle cell)
|
|
{
|
|
const Vector& n0 = cell->vertex(0)->normal();
|
|
const Vector& n1 = cell->vertex(1)->normal();
|
|
const Vector& n2 = cell->vertex(2)->normal();
|
|
const Vector& n3 = cell->vertex(3)->normal();
|
|
Vector n = n0 + n1 + n2 + n3;
|
|
FT sq_norm = n*n;
|
|
if(sq_norm != 0.0)
|
|
return n / std::sqrt(sq_norm); // normalize
|
|
else
|
|
return CGAL::NULL_VECTOR;
|
|
}
|
|
|
|
// cotan formula as area(voronoi face) / len(primal edge)
|
|
FT cotan_geometric(Edge& edge)
|
|
{
|
|
Cell_handle cell = edge.first;
|
|
Vertex_handle vi = cell->vertex(edge.second);
|
|
Vertex_handle vj = cell->vertex(edge.third);
|
|
|
|
// primal edge
|
|
const Point& pi = vi->point();
|
|
const Point& pj = vj->point();
|
|
Vector primal = pj - pi;
|
|
FT len_primal = std::sqrt(primal * primal);
|
|
return area_voronoi_face(edge) / len_primal;
|
|
}
|
|
|
|
// spin around edge
|
|
// return area(voronoi face)
|
|
FT area_voronoi_face(Edge& edge)
|
|
{
|
|
// circulate around edge
|
|
Cell_circulator circ = m_tr->incident_cells(edge);
|
|
Cell_circulator done = circ;
|
|
std::vector<Point> voronoi_points;
|
|
do
|
|
{
|
|
Cell_handle cell = circ;
|
|
if(!m_tr->is_infinite(cell))
|
|
voronoi_points.push_back(m_tr->dual(cell));
|
|
else // one infinite tet, switch to another calculation
|
|
return area_voronoi_face_boundary(edge);
|
|
circ++;
|
|
}
|
|
while(circ != done);
|
|
|
|
if(voronoi_points.size() < 3)
|
|
{
|
|
CGAL_surface_reconstruction_points_assertion(false);
|
|
return 0.0;
|
|
}
|
|
|
|
// sum up areas
|
|
FT area = 0.0;
|
|
const Point& a = voronoi_points[0];
|
|
unsigned int nb_triangles = voronoi_points.size() - 2;
|
|
for(unsigned int i=1;i<nb_triangles;i++)
|
|
{
|
|
const Point& b = voronoi_points[i];
|
|
const Point& c = voronoi_points[i+1];
|
|
Triangle triangle(a,b,c);
|
|
area += std::sqrt(triangle.squared_area());
|
|
}
|
|
return area;
|
|
}
|
|
|
|
// approximate area when a cell is infinite
|
|
FT area_voronoi_face_boundary(Edge& edge)
|
|
{
|
|
FT area = 0.0;
|
|
Vertex_handle vi = edge.first->vertex(edge.second);
|
|
Vertex_handle vj = edge.first->vertex(edge.third);
|
|
|
|
const Point& pi = vi->point();
|
|
const Point& pj = vj->point();
|
|
Point m = CGAL::midpoint(pi,pj);
|
|
|
|
// circulate around each incident cell
|
|
Cell_circulator circ = m_tr->incident_cells(edge);
|
|
Cell_circulator done = circ;
|
|
do
|
|
{
|
|
Cell_handle cell = circ;
|
|
if(!m_tr->is_infinite(cell))
|
|
{
|
|
// circumcenter of cell
|
|
Point c = m_tr->dual(cell);
|
|
Tetrahedron tet = m_tr->tetrahedron(cell);
|
|
|
|
int i = cell->index(vi);
|
|
int j = cell->index(vj);
|
|
int k = -1, l = -1;
|
|
other_two_indices(i,j, &k,&l);
|
|
Vertex_handle vk = cell->vertex(k);
|
|
Vertex_handle vl = cell->vertex(l);
|
|
|
|
const Point& pk = vk->point();
|
|
const Point& pl = vl->point();
|
|
|
|
// if circumcenter is outside tet
|
|
// pick barycenter instead
|
|
if(tet.has_on_unbounded_side(c))
|
|
{
|
|
Point cell_points[4] = {pi,pj,pk,pl};
|
|
c = CGAL::centroid(cell_points, cell_points+4);
|
|
}
|
|
|
|
Point ck = CGAL::circumcenter(pi,pj,pk);
|
|
Point cl = CGAL::circumcenter(pi,pj,pl);
|
|
|
|
Triangle mcck(m,m,ck);
|
|
Triangle mccl(m,m,cl);
|
|
|
|
area += std::sqrt(mcck.squared_area());
|
|
area += std::sqrt(mccl.squared_area());
|
|
}
|
|
circ++;
|
|
}
|
|
while(circ != done);
|
|
return area;
|
|
}
|
|
|
|
// Gets indices different from i and j
|
|
void other_two_indices(int i, int j, int* k, int* l)
|
|
{
|
|
CGAL_surface_reconstruction_points_assertion(i != j);
|
|
bool k_done = false;
|
|
bool l_done = false;
|
|
for(int index=0;index<4;index++)
|
|
{
|
|
if(index != i && index != j)
|
|
{
|
|
if(!k_done)
|
|
{
|
|
*k = index;
|
|
k_done = true;
|
|
}
|
|
else
|
|
{
|
|
*l = index;
|
|
l_done = true;
|
|
}
|
|
}
|
|
}
|
|
CGAL_surface_reconstruction_points_assertion(k_done);
|
|
CGAL_surface_reconstruction_points_assertion(l_done);
|
|
}
|
|
|
|
/// Assemble vi's row of the linear system A*X=B
|
|
///
|
|
/// @commentheading Template parameters:
|
|
/// @param SparseLinearAlgebraTraits_d Symmetric definite positive sparse linear solver.
|
|
template <class SparseLinearAlgebraTraits_d>
|
|
void assemble_poisson_row(typename SparseLinearAlgebraTraits_d::Matrix& A,
|
|
Vertex_handle vi,
|
|
typename SparseLinearAlgebraTraits_d::Vector& B,
|
|
double lambda)
|
|
{
|
|
// for each vertex vj neighbor of vi
|
|
std::vector<Vertex_handle> vertices;
|
|
m_tr->incident_vertices(vi,std::back_inserter(vertices));
|
|
double diagonal = 0.0;
|
|
for(typename std::vector<Vertex_handle>::iterator it = vertices.begin();
|
|
it != vertices.end();
|
|
it++)
|
|
{
|
|
Vertex_handle vj = *it;
|
|
if(m_tr->is_infinite(vj))
|
|
continue;
|
|
|
|
// get corresponding edge
|
|
Edge edge = sorted_edge(vi,vj);
|
|
|
|
double cij = cotan_geometric(edge);
|
|
if(vj->constrained())
|
|
B[vi->index()] -= cij * vj->f(); // change rhs
|
|
else
|
|
A.set_coef(vi->index(),vj->index(), -cij, true /*new*/); // off-diagonal coefficient
|
|
|
|
diagonal += cij;
|
|
}
|
|
|
|
// diagonal coefficient
|
|
if (vi->type() == Triangulation::INPUT)
|
|
A.set_coef(vi->index(),vi->index(), diagonal + lambda, true /*new*/) ;
|
|
else
|
|
A.set_coef(vi->index(),vi->index(), diagonal, true /*new*/);
|
|
}
|
|
|
|
Edge sorted_edge(Vertex_handle vi,
|
|
Vertex_handle vj)
|
|
{
|
|
int i1 = 0;
|
|
int i2 = 0;
|
|
Cell_handle cell = NULL;
|
|
bool success;
|
|
if(vi->index() > vj->index())
|
|
success = m_tr->is_edge(vi,vj,cell,i1,i2);
|
|
else
|
|
success = m_tr->is_edge(vj,vi,cell,i1,i2);
|
|
CGAL_surface_reconstruction_points_assertion(success);
|
|
return Edge(cell,i1,i2);
|
|
}
|
|
|
|
/// Computes enlarged geometric bounding sphere of the embedded triangulation.
|
|
Sphere enlarged_bounding_sphere(FT ratio) const
|
|
{
|
|
Sphere bsphere = bounding_sphere(); // triangulation's bounding sphere
|
|
return Sphere(bsphere.center(), bsphere.squared_radius() * ratio*ratio);
|
|
}
|
|
|
|
}; // end of Poisson_reconstruction_function
|
|
|
|
|
|
} //namespace CGAL
|
|
|
|
#endif // CGAL_POISSON_RECONSTRUCTION_FUNCTION_H
|