mirror of https://github.com/CGAL/cgal
41 lines
1.5 KiB
TeX
41 lines
1.5 KiB
TeX
\begin{ccRefConcept}{PolynomialTraits_d::ScaleHomogeneous}
|
|
\ccDefinition
|
|
|
|
Given a numerator $a$ and a denominator $b$ this \ccc{AdaptableFunctor}
|
|
scales a \ccc{PolynomialTraits_d::Polynomial_d} $p$ with respect to one variable,
|
|
that is, it computes $b^{degree(p)}\cdot p(a/b\cdot x)$.
|
|
|
|
Note that this functor operates on the polynomial in the univariate view, that is,
|
|
the polynomial is considered as a univariate homogeneous polynomial in one specific variable.
|
|
|
|
\ccRefines
|
|
\ccc{AdaptableFunctor}
|
|
|
|
\ccTypes
|
|
|
|
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
|
|
\ccCreationVariable{fo}
|
|
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}
|
|
|
|
\ccOperations
|
|
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
|
|
PolynomialTraits_d::Innermost_coefficient_type a,
|
|
PolynomialTraits_d::Innermost_coefficient_type b);}
|
|
{ Returns $b^{degree}\cdot p(a/b\cdot x)$,
|
|
with respect to the outermost variable. }
|
|
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
|
|
PolynomialTraits_d::Innermost_coefficient_type a,
|
|
PolynomialTraits_d::Innermost_coefficient_type b,
|
|
int i);}
|
|
{ Same as first operator but for variable $x_i$.
|
|
\ccPrecond $0 \leq i < d$
|
|
}
|
|
|
|
%\ccHasModels
|
|
|
|
\ccSeeAlso
|
|
|
|
\ccRefIdfierPage{Polynomial_d}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d}\\
|
|
|
|
\end{ccRefConcept} |