cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_ScaleHom...

41 lines
1.5 KiB
TeX

\begin{ccRefConcept}{PolynomialTraits_d::ScaleHomogeneous}
\ccDefinition
Given a numerator $a$ and a denominator $b$ this \ccc{AdaptableFunctor}
scales a \ccc{PolynomialTraits_d::Polynomial_d} $p$ with respect to one variable,
that is, it computes $b^{degree(p)}\cdot p(a/b\cdot x)$.
Note that this functor operates on the polynomial in the univariate view, that is,
the polynomial is considered as a univariate homogeneous polynomial in one specific variable.
\ccRefines
\ccc{AdaptableFunctor}
\ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{fo}
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}
\ccOperations
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
PolynomialTraits_d::Innermost_coefficient_type a,
PolynomialTraits_d::Innermost_coefficient_type b);}
{ Returns $b^{degree}\cdot p(a/b\cdot x)$,
with respect to the outermost variable. }
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
PolynomialTraits_d::Innermost_coefficient_type a,
PolynomialTraits_d::Innermost_coefficient_type b,
int i);}
{ Same as first operator but for variable $x_i$.
\ccPrecond $0 \leq i < d$
}
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\end{ccRefConcept}