cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SignAtHo...

43 lines
1.5 KiB
TeX

\begin{ccRefConcept}{PolynomialTraits_d::SignAtHomogeneous}
\ccDefinition
This \ccc{AdaptableFunctor} returns the sign of a
\ccc{PolynomialTraits_d::Polynomial_d} $p$ at a given homogeneous point,
which is given by an iterator range.
The polynomial is interpreted as a homogeneous polynomial in all variables. \\
For instance the polynomial $p(x_0,x_1) = x_0^2x_1^3+x_1^4$ is interpreted as the homogeneous
polynomial $p(x_0,x_1,w) = x_0^2x_1^3+x_1^4w^1$.
This functor is well defined if \ccc{PolynomialTraits_d::Innermost_coefficient_type} is
\ccc{RealEmbeddable}.
\ccRefines
\ccc{AdaptableFunctor}
\ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{fo}
\ccTypedef{typedef CGAL::Sign result_type;}{}\ccGlue
\ccOperations
\ccMethod{
template <class InputIterator>
result_type operator()(PolynomialTraits_d::Polynomial_d p,
InputIterator begin,
InputIterator end );}{
Returns the sign of $p$ at the given homogeneous point, where $begin$ is
referring to the innermost variable.
\ccPrecond{(end-begin==\ccc{PolynomialTraits_d::d}+1)}
\ccPrecond{\ccc{std::iterator_traits< InputIterator >::value_type} is \ccc{ExplicitInteroperable} with \ccc{PolynomialTraits_d::Innermost_coefficient_type}.}
}
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\end{ccRefConcept}