cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Univaria...

47 lines
1.6 KiB
TeX

\begin{ccRefConcept}{PolynomialTraits_d::UnivariateContentUpToConstantFactor}
\ccDefinition
This \ccc{AdaptableUnaryFunction} computes the content of a
\ccc{PolynomialTraits_d::Polynomial_d}
with respect to the univariate (recursive) view on the
polynomial {\em up to a constant factor (utcf)}, that is,
it computes the $gcd\_utcf$ of all coefficients with respect to one variable.
Remark: This is called \ccc{UnivariateContentUpToConstantFactor} for
symmetric reasons with respect to \ccc{PolynomialTraits_d::UnivariateContent}
and \ccc{PolynomialTraits_d::MultivariateContent}.
However, a concept \ccc{PolynomialTraits_d::MultivariateContentUpToConstantFactor}
does not exist since the result is trivial.
\ccRefines
\ccc{AdaptableUnaryFunction}
\ccCreationVariable{fo}
\ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{}
\ccOperations
\ccMethod{result_type operator()(first_argument_type p);}
{Computes the content {\em up to a constant factor} of $p$ with
respect to the outermost variable $x_{d-1}$. }
%\ccMethod{result_type operator()(first_argument_type p, int i);}
% {Computes the content {\em up to a constant factor} of $p$ with
% respect to variable $x_i$.
% \ccPrecond $0 \leq i < d$
% }
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\ccRefIdfierPage{PolynomialTraits_d::GcdUpToConstantFactor}\\
\end{ccRefConcept}