mirror of https://github.com/CGAL/cgal
47 lines
1.6 KiB
TeX
47 lines
1.6 KiB
TeX
\begin{ccRefConcept}{PolynomialTraits_d::UnivariateContentUpToConstantFactor}
|
|
|
|
\ccDefinition
|
|
|
|
This \ccc{AdaptableUnaryFunction} computes the content of a
|
|
\ccc{PolynomialTraits_d::Polynomial_d}
|
|
with respect to the univariate (recursive) view on the
|
|
polynomial {\em up to a constant factor (utcf)}, that is,
|
|
it computes the $gcd\_utcf$ of all coefficients with respect to one variable.
|
|
|
|
Remark: This is called \ccc{UnivariateContentUpToConstantFactor} for
|
|
symmetric reasons with respect to \ccc{PolynomialTraits_d::UnivariateContent}
|
|
and \ccc{PolynomialTraits_d::MultivariateContent}.
|
|
However, a concept \ccc{PolynomialTraits_d::MultivariateContentUpToConstantFactor}
|
|
does not exist since the result is trivial.
|
|
|
|
\ccRefines
|
|
\ccc{AdaptableUnaryFunction}
|
|
\ccCreationVariable{fo}
|
|
|
|
\ccTypes
|
|
|
|
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
|
|
\ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{}\ccGlue
|
|
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{}
|
|
|
|
\ccOperations
|
|
\ccMethod{result_type operator()(first_argument_type p);}
|
|
{Computes the content {\em up to a constant factor} of $p$ with
|
|
respect to the outermost variable $x_{d-1}$. }
|
|
|
|
%\ccMethod{result_type operator()(first_argument_type p, int i);}
|
|
% {Computes the content {\em up to a constant factor} of $p$ with
|
|
% respect to variable $x_i$.
|
|
% \ccPrecond $0 \leq i < d$
|
|
% }
|
|
|
|
%\ccHasModels
|
|
|
|
\ccSeeAlso
|
|
|
|
\ccRefIdfierPage{Polynomial_d}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d::GcdUpToConstantFactor}\\
|
|
|
|
\end{ccRefConcept}
|