mirror of https://github.com/CGAL/cgal
603 lines
22 KiB
C++
603 lines
22 KiB
C++
// Copyright (c) 2017 CNRS and LIRIS' Establishments (France).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public License as
|
|
// published by the Free Software Foundation; either version 3 of the License,
|
|
// or (at your option) any later version.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
// SPDX-License-Identifier: LGPL-3.0+
|
|
//
|
|
// Author(s) : Guillaume Damiand <guillaume.damiand@liris.cnrs.fr>
|
|
//
|
|
#ifndef CGAL_COMBINATORIAL_MAP_FUNCTIONALITIES_H
|
|
#define CGAL_COMBINATORIAL_MAP_FUNCTIONALITIES_H 1
|
|
|
|
#include <stack>
|
|
#include <CGAL/Union_find.h>
|
|
#include <boost/unordered_map.hpp>
|
|
#include <CGAL/Random.h>
|
|
#include <CGAL/Path_on_surface.h>
|
|
|
|
namespace CGAL {
|
|
|
|
template<typename Map>
|
|
class Combinatorial_map_tools
|
|
{
|
|
public:
|
|
typedef typename Map::Dart_handle Dart_handle;
|
|
typedef typename Map::Dart_const_handle Dart_const_handle;
|
|
typedef CGAL::Union_find<Dart_handle> UFTree;
|
|
typedef typename UFTree::handle UFTree_handle;
|
|
|
|
typedef boost::unordered_map<Dart_const_handle,
|
|
std::pair<Dart_const_handle, Dart_const_handle> > TPaths;
|
|
|
|
Combinatorial_map_tools(Map& amap) : m_original_map(amap)
|
|
{
|
|
if (!m_map.is_without_boundary(1))
|
|
{
|
|
std::cerr<<"ERROR: the given amap has 1-boundaries; "
|
|
<<"such a surface is not possible to process here."
|
|
<<std::endl;
|
|
}
|
|
if (!m_map.is_without_boundary(2))
|
|
{
|
|
std::cerr<<"ERROR: the given amap has 2-boundaries; "
|
|
<<"which are not yet considered (but this will be done later)."
|
|
<<std::endl;
|
|
}
|
|
|
|
// The mapping between darts of the original map into the copied map.
|
|
boost::unordered_map<Dart_const_handle, Dart_handle> origin_to_copy;
|
|
|
|
// We copy the original map, while keeping a mapping between darts.
|
|
m_map.copy(m_original_map, &origin_to_copy);
|
|
|
|
// The mapping between darts of the copy into darts of the original map.
|
|
boost::unordered_map<Dart_handle, Dart_const_handle> copy_to_origin;
|
|
for (auto it=origin_to_copy.begin(); it!=origin_to_copy.end(); ++it)
|
|
{ copy_to_origin[it->second]=it->first; }
|
|
|
|
// We reserve the two marks (used to mark darts in m_original_map that
|
|
// belong to T or to L)
|
|
m_mark_T=m_original_map.get_new_mark();
|
|
m_mark_L=m_original_map.get_new_mark();
|
|
|
|
/* std::cout<<"Number of darts in m_map: "<<m_map.number_of_darts()
|
|
<<"; number of darts in origin_to_copy: "<<origin_to_copy.size()
|
|
<<"; number of darts in copy_to_origin: "<<copy_to_origin.size()
|
|
<<std::endl; */
|
|
|
|
// 1) We simplify m_map in a surface with only one vertex
|
|
surface_simplification_in_one_vertex(origin_to_copy, copy_to_origin);
|
|
|
|
#ifdef CGAL_TRACE_CMAP_TOOLS
|
|
std::cout<<"All non loop contracted: ";
|
|
m_map.display_characteristics(std::cout) << ", valid="
|
|
<< m_map.is_valid() << std::endl;
|
|
/* std::cout<<"Number of darts in m_map: "<<m_map.number_of_darts()
|
|
<<"; number of darts in origin_to_copy: "<<origin_to_copy.size()
|
|
<<"; number of darts in copy_to_origin: "<<copy_to_origin.size()
|
|
<<std::endl; */
|
|
#endif
|
|
|
|
// 2) Now we compute each length two path associated with each edge that does
|
|
// not belong to the spanning tree (which are thus all the survival edges).
|
|
compute_length_two_paths(origin_to_copy);
|
|
|
|
/* std::cout<<"Number of darts in m_map: "<<m_map.number_of_darts()
|
|
<<"; number of darts in origin_to_copy: "<<origin_to_copy.size()
|
|
<<"; number of darts in copy_to_origin: "<<copy_to_origin.size()
|
|
<<std::endl; */
|
|
|
|
/* std::cout<<"Paths are all valid 1 ? "<<(are_paths_valid()?"YES":"NO")
|
|
<<std::endl; */
|
|
|
|
// 3) We simplify m_map in a surface with only one face
|
|
surface_simplification_in_one_face(origin_to_copy, copy_to_origin);
|
|
|
|
#ifdef CGAL_TRACE_CMAP_TOOLS
|
|
std::cout<<"All faces merges: ";
|
|
m_map.display_characteristics(std::cout) << ", valid="
|
|
<< m_map.is_valid() << std::endl;
|
|
|
|
/* std::cout<<"Paths are all valid 2 ? "<<(are_paths_valid()?"YES":"NO")
|
|
<<std::endl;*/
|
|
|
|
/* std::cout<<"Number of darts in m_map: "<<m_map.number_of_darts()
|
|
<<"; number of darts in origin_to_copy: "<<origin_to_copy.size()
|
|
<<"; number of darts in copy_to_origin: "<<copy_to_origin.size()
|
|
<<std::endl; */
|
|
#endif
|
|
|
|
// 4) And we quadrangulate the face
|
|
surface_quadrangulate();
|
|
|
|
#ifdef CGAL_TRACE_CMAP_TOOLS
|
|
std::cout<<"After quadrangulation: ";
|
|
m_map.display_characteristics(std::cout) << ", valid="
|
|
<< m_map.is_valid() << std::endl;
|
|
|
|
std::cout<<"Paths are all valid ? "<<(are_paths_valid()?"YES":"NO")
|
|
<<std::endl;
|
|
#endif
|
|
}
|
|
|
|
~Combinatorial_map_tools()
|
|
{
|
|
m_original_map.free_mark(m_mark_T);
|
|
m_original_map.free_mark(m_mark_L);
|
|
}
|
|
|
|
Path_on_surface<Map> transform_original_path_into_quad_surface
|
|
(const Path_on_surface<Map>& path)
|
|
{
|
|
Path_on_surface<Map> res(m_map);
|
|
for (std::size_t i=0; i<path.length(); ++i)
|
|
{
|
|
if (!m_original_map.is_marked(path[i], m_mark_T))
|
|
{
|
|
res.push_back(get_first_dart_of_the_path(path[i]));
|
|
res.push_back(get_second_dart_of_the_path(path[i]));
|
|
}
|
|
}
|
|
assert(res.is_valid());
|
|
return res;
|
|
}
|
|
|
|
protected:
|
|
void initialize_vertices(UFTree& uftrees,
|
|
boost::unordered_map<Dart_const_handle, UFTree_handle>&
|
|
vertices)
|
|
{
|
|
uftrees.clear();
|
|
vertices.clear();
|
|
|
|
typename Map::size_type treated=m_map.get_new_mark();
|
|
for (typename Map::Dart_range::iterator it=m_map.darts().begin(),
|
|
itend=m_map.darts().end(); it!=itend; ++it)
|
|
{
|
|
if (!m_map.is_marked(it, treated))
|
|
{
|
|
UFTree_handle newuf=uftrees.make_set(it);
|
|
for (typename Map::template Dart_of_cell_basic_range<0>::iterator
|
|
itv=m_map.template darts_of_cell_basic<0>(it, treated).begin(),
|
|
itvend=m_map.template darts_of_cell_basic<0>(it, treated).end();
|
|
itv!=itvend; ++itv)
|
|
{
|
|
vertices[itv]=newuf;
|
|
m_map.mark(itv, treated);
|
|
}
|
|
}
|
|
}
|
|
m_map.free_mark(treated);
|
|
}
|
|
|
|
void initialize_faces(UFTree& uftrees,
|
|
boost::unordered_map<Dart_const_handle, UFTree_handle>&
|
|
faces)
|
|
{
|
|
uftrees.clear();
|
|
faces.clear();
|
|
|
|
typename Map::size_type treated=m_map.get_new_mark();
|
|
for (typename Map::Dart_range::iterator it=m_map.darts().begin(),
|
|
itend=m_map.darts().end();
|
|
it!=itend; ++it)
|
|
{
|
|
if (!m_map.is_marked(it, treated))
|
|
{
|
|
UFTree_handle newuf=uftrees.make_set(it);
|
|
Dart_handle cur=it;
|
|
do
|
|
{
|
|
faces[cur]=newuf;
|
|
m_map.mark(cur, treated);
|
|
cur=m_map.template beta<1>(cur);
|
|
}
|
|
while (cur!=it);
|
|
}
|
|
}
|
|
m_map.free_mark(treated);
|
|
}
|
|
|
|
UFTree_handle get_uftree(const UFTree& uftrees,
|
|
const boost::unordered_map<Dart_const_handle,
|
|
UFTree_handle>& mapdhtouf,
|
|
Dart_const_handle dh)
|
|
{
|
|
assert(dh!=NULL);
|
|
assert(mapdhtouf.find(dh)!=mapdhtouf.end());
|
|
return uftrees.find(mapdhtouf.find(dh)->second);
|
|
}
|
|
|
|
// Mark the edge containing adart in the given map.
|
|
void mark_edge(const Map& amap, Dart_const_handle adart, std::size_t amark)
|
|
{
|
|
amap.mark(amap.template beta<2>(adart), amark);
|
|
amap.mark(adart, amark);
|
|
}
|
|
|
|
// Erase the edge given by adart (which belongs to the map m_map) from the
|
|
// associative array copy_to_origin, and erase the corresponding edge
|
|
// (which belongs to the map m_original_map) from the array origin_to_copy
|
|
void erase_edge_from_associative_arrays
|
|
(Dart_handle adart,
|
|
boost::unordered_map<Dart_const_handle, Dart_handle>& origin_to_copy,
|
|
boost::unordered_map<Dart_handle, Dart_const_handle>& copy_to_origin)
|
|
{
|
|
origin_to_copy.erase(m_original_map.template beta<2>(copy_to_origin[adart]));
|
|
origin_to_copy.erase(copy_to_origin[adart]);
|
|
|
|
copy_to_origin.erase(m_map.template beta<2>(adart));
|
|
copy_to_origin.erase(adart);
|
|
}
|
|
|
|
// Step 1) Transform m_map into an equivalent surface having only one
|
|
// vertex. All edges contracted during this step belong to the spanning
|
|
// tree T, and thus corresponding edges in m_original_map are marked.
|
|
void surface_simplification_in_one_vertex
|
|
(boost::unordered_map<Dart_const_handle, Dart_handle>& origin_to_copy,
|
|
boost::unordered_map<Dart_handle, Dart_const_handle>& copy_to_origin)
|
|
{
|
|
UFTree uftrees; // uftree of vertices; one tree for each vertex,
|
|
// contains one dart of the vertex
|
|
boost::unordered_map<Dart_const_handle, UFTree_handle> vertices;
|
|
initialize_vertices(uftrees, vertices);
|
|
|
|
m_map.set_automatic_attributes_management(false);
|
|
|
|
for (typename Map::Dart_range::iterator it=m_map.darts().begin(),
|
|
itend=m_map.darts().end(); it!=itend; ++it)
|
|
{
|
|
if (get_uftree(uftrees, vertices, it)!=
|
|
get_uftree(uftrees, vertices, m_map.template beta<2>(it)))
|
|
{
|
|
mark_edge(m_original_map, copy_to_origin[it], m_mark_T);
|
|
erase_edge_from_associative_arrays(it, origin_to_copy, copy_to_origin);
|
|
|
|
uftrees.unify_sets(get_uftree(uftrees, vertices, it),
|
|
get_uftree(uftrees, vertices, m_map.template beta<2>(it)));
|
|
m_map.template contract_cell<1>(it);
|
|
}
|
|
}
|
|
|
|
m_map.set_automatic_attributes_management(true);
|
|
}
|
|
|
|
// Step 2) Compute, for each edge of m_original_map not in the spanning
|
|
// tree T, the pair of darts of the edge in m_copy. This pair of edges
|
|
// will be updated later (in surface_simplification_in_one_face() and in
|
|
// surface_quadrangulate() )
|
|
void compute_length_two_paths
|
|
(const boost::unordered_map<Dart_const_handle, Dart_handle>& origin_to_copy)
|
|
{
|
|
paths.clear();
|
|
|
|
for (typename Map::Dart_range::const_iterator
|
|
it=m_original_map.darts().begin(),
|
|
itend=m_original_map.darts().end(); it!=itend; ++it)
|
|
{
|
|
if (!m_original_map.is_marked(it, m_mark_T))
|
|
{
|
|
if (m_original_map.template is_free<2>(it) ||
|
|
it<m_original_map.template beta<2>(it))
|
|
{
|
|
paths[it]=std::make_pair
|
|
(origin_to_copy.at(it),
|
|
m_map.template beta<2>(origin_to_copy.at(it)));
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CGAL_TRACE_CMAP_TOOLS
|
|
std::cout<<"Number of darts in paths: "<<paths.size()
|
|
<<"; number of darts in m_map: "<<m_map.number_of_darts()<<std::endl;
|
|
#endif
|
|
}
|
|
|
|
// Step 3) Transform the 2-map into an equivalent surface having only
|
|
// one vertex. All edges removed during this step belong to the
|
|
// dual spanning tree L (spanning tree of the dual 2-map).
|
|
void surface_simplification_in_one_face
|
|
(boost::unordered_map<Dart_const_handle, Dart_handle>& origin_to_copy,
|
|
boost::unordered_map<Dart_handle, Dart_const_handle>& copy_to_origin)
|
|
{
|
|
UFTree uftrees; // uftree of faces; one tree for each face,
|
|
// contains one dart of the face
|
|
boost::unordered_map<Dart_const_handle, UFTree_handle> faces;
|
|
initialize_faces(uftrees, faces);
|
|
|
|
m_map.set_automatic_attributes_management(false);
|
|
|
|
typename Map::size_type toremove=m_map.get_new_mark();
|
|
Dart_handle currentdart=NULL, oppositedart=NULL;
|
|
|
|
for (typename Map::Dart_range::iterator it=m_map.darts().begin(),
|
|
itend=m_map.darts().end(); it!=itend; ++it)
|
|
{
|
|
currentdart=it;
|
|
assert (!m_map.template is_free<2>(currentdart)); // TODO later
|
|
oppositedart=m_map.template beta<2>(currentdart);
|
|
|
|
if (currentdart<oppositedart && !m_map.is_marked(currentdart, toremove))
|
|
{
|
|
// We remove degree two edges (we cannot have dangling edges
|
|
// because we had previously contracted all the non loop and thus
|
|
// we have only one vertex).
|
|
if (get_uftree(uftrees, faces, currentdart)!=
|
|
get_uftree(uftrees, faces, oppositedart))
|
|
{
|
|
// We cannot have a dangling edge
|
|
assert(m_map.template beta<0>(currentdart)!=oppositedart);
|
|
assert(m_map.template beta<1>(currentdart)!=oppositedart);
|
|
|
|
uftrees.unify_sets(get_uftree(uftrees, faces, currentdart),
|
|
get_uftree(uftrees, faces, oppositedart));
|
|
|
|
m_map.mark(currentdart, toremove);
|
|
m_map.mark(oppositedart, toremove);
|
|
mark_edge(m_original_map, copy_to_origin[currentdart], m_mark_L);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (m_map.number_of_marked_darts(toremove)==m_map.number_of_darts())
|
|
{
|
|
// Case of sphere; all darts are removed.
|
|
paths.clear();
|
|
}
|
|
else
|
|
{
|
|
// We update the pair of darts
|
|
for (typename TPaths::iterator itp=paths.begin(), itpend=paths.end();
|
|
itp!=itpend; ++itp)
|
|
{
|
|
std::pair<Dart_const_handle, Dart_const_handle>& p=itp->second;
|
|
Dart_const_handle initdart=p.first;
|
|
//std::cout<<m_map.darts().index(p.first)<<"; "<<std::flush;
|
|
while (m_map.is_marked(p.first, toremove))
|
|
{
|
|
p.first=m_map.template beta<0, 2>(p.first);
|
|
// std::cout<<m_map.darts().index(p.first)<<"; "<<std::flush;
|
|
assert(p.first!=initdart);
|
|
}
|
|
// std::cout<<std::endl;
|
|
initdart=p.second;
|
|
while (m_map.is_marked(p.second, toremove))
|
|
{
|
|
p.second=m_map.template beta<0, 2>(p.second);
|
|
assert(p.second!=initdart);
|
|
}
|
|
}
|
|
}
|
|
|
|
// We remove all the edges to remove.
|
|
for (typename Map::Dart_range::iterator it=m_map.darts().begin(),
|
|
itend=m_map.darts().end();
|
|
it!=itend; ++it)
|
|
{
|
|
if (m_map.is_dart_used(it) && m_map.is_marked(it, toremove))
|
|
{
|
|
erase_edge_from_associative_arrays(it, origin_to_copy, copy_to_origin);
|
|
// TODO LATER (?) OPTIMIZE AND REPLACE THE REMOVE_CELL CALL BY THE MODIFICATION BY HAND
|
|
// OR DEVELOP A SPECIALIZED VERSION OF REMOVE_CELL
|
|
m_map.template remove_cell<1>(it);
|
|
}
|
|
}
|
|
|
|
m_map.set_automatic_attributes_management(true);
|
|
m_map.free_mark(toremove);
|
|
}
|
|
|
|
// Step 4) quadrangulate the surface.
|
|
void surface_quadrangulate()
|
|
{
|
|
// Here the map has only one face and one vertex.
|
|
typename Map::size_type oldedges=m_map.get_new_mark();
|
|
m_map.negate_mark(oldedges); // now all edges are marked
|
|
|
|
// 1) We insert a vertex in the face (note that all points have the
|
|
// same geometry). New edges created by the operation are not marked.
|
|
m_map.insert_point_in_cell_2(m_map.darts().begin(),
|
|
m_map.point(m_map.darts().begin()));
|
|
|
|
// 2) We update the pair of darts
|
|
for (typename TPaths::iterator itp=paths.begin(), itpend=paths.end();
|
|
itp!=itpend; ++itp)
|
|
{
|
|
std::pair<Dart_const_handle, Dart_const_handle>& p=itp->second;
|
|
p.first=m_map.template beta<0, 2>(p.first);
|
|
p.second=m_map.template beta<0>(p.second);
|
|
}
|
|
|
|
// 3) We remove all the old edges.
|
|
for (typename Map::Dart_range::iterator it=m_map.darts().begin(),
|
|
itend=m_map.darts().end();
|
|
it!=itend; ++it)
|
|
{
|
|
if (m_map.is_dart_used(it) && m_map.is_marked(it, oldedges))
|
|
{ m_map.template remove_cell<1>(it); }
|
|
}
|
|
|
|
m_map.free_mark(oldedges);
|
|
}
|
|
|
|
/// @return true iff the edge containing adart is associated with a path.
|
|
/// (used for debug purpose because we are suppose to be able to
|
|
/// test this by using directly the mark m_mark_T).
|
|
bool is_edge_has_path(Dart_const_handle adart) const
|
|
{
|
|
Dart_const_handle opposite=m_original_map.template beta<2>(adart);
|
|
if (adart<opposite)
|
|
{
|
|
return paths.find(adart)!=paths.end();
|
|
}
|
|
return paths.find(opposite)!=paths.end();
|
|
}
|
|
|
|
/// @return the pair of darts associated with the edge containing adart
|
|
/// in m_original_map.
|
|
/// @pre the edge containing adart must not belong to T.
|
|
std::pair<Dart_const_handle, Dart_const_handle>& get_pair_of_darts
|
|
(Dart_const_handle adart)
|
|
{
|
|
assert(!m_original_map.is_marked(adart, m_mark_T));
|
|
assert(is_edge_has_path(adart));
|
|
|
|
Dart_const_handle opposite=m_original_map.template beta<2>(adart);
|
|
if (adart<opposite)
|
|
{ return paths.find(adart)->second; }
|
|
|
|
return paths.find(opposite)->second;
|
|
}
|
|
|
|
Dart_const_handle get_first_dart_of_the_path(Dart_const_handle adart) const
|
|
{
|
|
assert(!m_original_map.is_marked(adart, m_mark_T));
|
|
assert(is_edge_has_path(adart));
|
|
|
|
Dart_const_handle opposite=m_original_map.template beta<2>(adart);
|
|
if (adart<opposite)
|
|
{
|
|
const std::pair<Dart_const_handle, Dart_const_handle>&
|
|
p=paths.find(adart)->second;
|
|
return p.first;
|
|
}
|
|
|
|
const std::pair<Dart_const_handle, Dart_const_handle>&
|
|
p=paths.find(opposite)->second;
|
|
return m_map.template beta<2>(p.second);
|
|
}
|
|
|
|
Dart_const_handle get_second_dart_of_the_path(Dart_const_handle adart) const
|
|
{
|
|
assert(!m_original_map.is_marked(adart, m_mark_T));
|
|
assert(is_edge_has_path(adart));
|
|
|
|
Dart_const_handle opposite=m_original_map.template beta<2>(adart);
|
|
if (adart<opposite)
|
|
{
|
|
const std::pair<Dart_const_handle, Dart_const_handle>&
|
|
p=paths.find(adart)->second;
|
|
return p.second;
|
|
}
|
|
|
|
const std::pair<Dart_const_handle, Dart_const_handle>&
|
|
p=paths.find(opposite)->second;
|
|
return m_map.template beta<2>(p.first);
|
|
}
|
|
|
|
/// Test if paths are valid, i.e.:
|
|
/// 1) all the darts of m_original_map that do not belong to T are
|
|
/// associated with a pair of darts;
|
|
/// 2) all the darts of the paths belong to m_map;
|
|
/// 3) the origin of the second dart of the pair is the extremity of the
|
|
/// first dart.
|
|
bool are_paths_valid() const
|
|
{
|
|
bool res=true;
|
|
for (auto it=m_original_map.darts().begin(),
|
|
itend=m_original_map.darts().end(); it!=itend; ++it)
|
|
{
|
|
if (!m_original_map.is_marked(it, m_mark_T))
|
|
{
|
|
if (!is_edge_has_path(it))
|
|
{
|
|
std::cout<<"ERROR: an edge that does not belong to the spanning tree"
|
|
<<" T has no associated path."<<std::endl;
|
|
res=false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (is_edge_has_path(it))
|
|
{
|
|
std::cout<<"ERROR: an edge that belongs to the spanning tree"
|
|
<<" T has an associated path."<<std::endl;
|
|
res=false;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto it=paths.begin(); it!=paths.end(); ++it)
|
|
{
|
|
if (!m_map.is_dart_used(it->second.first))
|
|
{
|
|
std::cout<<"ERROR: first dart in paths does not exist anymore in m_map."
|
|
<<std::endl;
|
|
res=false;
|
|
}
|
|
else if (!m_map.darts().owns(it->second.first))
|
|
{
|
|
std::cout<<"ERROR: first dart in paths does not belong to m_map."
|
|
<<std::endl;
|
|
res=false;
|
|
}
|
|
if (!m_map.is_dart_used(it->second.second))
|
|
{
|
|
std::cout<<"ERROR: second dart in paths does not exist anymore in m_map."
|
|
<<std::endl;
|
|
res=false;
|
|
}
|
|
else if (!m_map.darts().owns(it->second.second))
|
|
{
|
|
std::cout<<"ERROR: second dart in paths does not belong to m_map."
|
|
<<std::endl;
|
|
res=false;
|
|
}
|
|
}
|
|
|
|
for (auto it=m_original_map.darts().begin(),
|
|
itend=m_original_map.darts().end(); it!=itend; ++it)
|
|
{
|
|
if (!m_original_map.is_marked(it, m_mark_T))
|
|
{
|
|
Dart_const_handle d1=get_first_dart_of_the_path(it);
|
|
Dart_const_handle d2=get_second_dart_of_the_path(it);
|
|
if (d1==NULL || d2==NULL)
|
|
{
|
|
std::cout<<"ERROR: an edge is associated with a null dart in paths."
|
|
<<std::endl;
|
|
res=false;
|
|
}
|
|
else
|
|
{
|
|
Dart_const_handle dd1=m_map.other_extremity(d1);
|
|
assert(dd1!=NULL);
|
|
if (m_map.vertex_attribute(dd1)!=m_map.vertex_attribute(d2))
|
|
{
|
|
std::cout<<"ERROR: the two darts in a path are not consecutive."
|
|
<<std::endl;
|
|
res=false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
protected:
|
|
const Map& m_original_map; // The original surface; not modified
|
|
Map m_map; // the transformed map
|
|
TPaths paths; // Pair of edges associated with each edge of m_original_map
|
|
// (except the edges that belong to the spanning tree T).
|
|
std::size_t m_mark_T; // mark each edge of m_original_map that belong to the spanning tree T
|
|
std::size_t m_mark_L; // mark each edge of m_original_map that belong to the dual spanning tree L
|
|
};
|
|
|
|
} // namespace CGAL
|
|
|
|
#endif // CGAL_COMBINATORIAL_MAP_FUNCTIONALITIES_H //
|
|
// EOF //
|