mirror of https://github.com/CGAL/cgal
228 lines
7.8 KiB
C++
228 lines
7.8 KiB
C++
// Copyright (c) 2023 INRIA (France).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org).
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
|
|
//
|
|
// Author(s) : Jackson Campolattaro
|
|
|
|
#ifndef ORTHTREE_TESTS_ORTHTREE_TRAITS_POINT_H
|
|
#define ORTHTREE_TESTS_ORTHTREE_TRAITS_POINT_H
|
|
|
|
#include <CGAL/license/Orthtree.h>
|
|
|
|
#include <CGAL/Dimension.h>
|
|
#include <CGAL/Orthtree/Cartesian_ranges.h>
|
|
|
|
#include <CGAL/Orthtree_traits_base.h>
|
|
|
|
namespace CGAL {
|
|
|
|
template <typename Tree, typename PointMap>
|
|
void reassign_points(
|
|
Tree& tree, PointMap& point_map,
|
|
typename Tree::Node_index n, const typename Tree::Point& center, typename Tree::Node_data points,
|
|
std::bitset<Tree::dimension> coord = {}, std::size_t dimension = 0
|
|
) {
|
|
|
|
// Root case: reached the last dimension
|
|
if (dimension == Tree::dimension) {
|
|
tree.data(tree.child(n, coord.to_ulong())) = points;
|
|
return;
|
|
}
|
|
|
|
// Split the point collection around the center point on this dimension
|
|
auto split_point = std::partition(
|
|
points.begin(), points.end(),
|
|
[&](const auto& p) -> bool {
|
|
return (get(point_map, p)[int(dimension)] < center[int(dimension)]);
|
|
}
|
|
);
|
|
|
|
// Further subdivide the first side of the split
|
|
std::bitset<Tree::dimension> coord_left = coord;
|
|
coord_left[dimension] = false;
|
|
reassign_points(tree, point_map, n, center, {points.begin(), split_point}, coord_left, dimension + 1);
|
|
|
|
// Further subdivide the second side of the split
|
|
std::bitset<Tree::dimension> coord_right = coord;
|
|
coord_right[dimension] = true;
|
|
reassign_points(tree, point_map, n, center, {split_point, points.end()}, coord_right, dimension + 1);
|
|
}
|
|
|
|
/*!
|
|
\ingroup PkgOrthtreeTraits
|
|
|
|
Traits class for defining an orthtree of points using the class `CGAL::Orthtree`.
|
|
|
|
\tparam GeomTraits model of `Kernel`.
|
|
\tparam PointRange must be a model of `Range` whose value type is the key type of `PointMap` and whose iterator type is model of `RandomAccessIterator`
|
|
\tparam PointMap must be a model of `ReadablePropertyMap` whose value type is a point type from `GeomTraits` matching the current dimension
|
|
\tparam dimension the dimension of the ambient Euclidean space.
|
|
|
|
\warning The input point set is not copied. It is used directly
|
|
and is rearranged by the `Orthtree`. Altering the point range
|
|
after creating the orthtree will leave it in an invalid state.
|
|
|
|
\cgalModels{CollectionPartitioningOrthtreeTraits}
|
|
\sa `CGAL::Octree`
|
|
\sa `CGAL::Quadtree`
|
|
\sa `CGAL::Orthtree_traits_base<GeomTraits, dimension>`
|
|
*/
|
|
template <
|
|
typename GeomTraits,
|
|
typename PointRange,
|
|
typename PointMap = Identity_property_map<typename std::iterator_traits<typename PointRange::iterator>::value_type>,
|
|
bool hypercubic_nodes = false,
|
|
int dimension = Ambient_dimension<
|
|
typename std::iterator_traits<typename PointRange::iterator>::value_type,
|
|
GeomTraits
|
|
>::value
|
|
>
|
|
struct Orthtree_traits_point : public Orthtree_traits_base<GeomTraits, dimension> {
|
|
public:
|
|
/// \name Types
|
|
/// @{
|
|
using Node_data = boost::iterator_range<typename PointRange::iterator>;
|
|
/// @}
|
|
|
|
using Base = Orthtree_traits_base<GeomTraits, dimension>;
|
|
using Self = Orthtree_traits_point<GeomTraits, PointRange, PointMap, hypercubic_nodes, dimension>;
|
|
using Tree = Orthtree<Self>;
|
|
|
|
using Node_index = typename Base::Node_index;
|
|
using Node_data_element = typename std::iterator_traits<typename PointRange::iterator>::value_type;
|
|
|
|
static_assert(std::is_same_v<typename std::iterator_traits<typename PointRange::iterator>::iterator_category, std::random_access_iterator_tag>);
|
|
|
|
Orthtree_traits_point(
|
|
PointRange& points,
|
|
PointMap point_map = PointMap()
|
|
) : m_points(points), m_point_map(point_map) {}
|
|
|
|
using Construct_root_node_bbox = typename Self::Bbox_d(*)();
|
|
|
|
auto construct_root_node_bbox_object() const {
|
|
return [&]() -> typename Self::Bbox_d {
|
|
|
|
std::array<typename Self::FT, Self::dimension> bbox_min, bbox_max;
|
|
Orthtrees::internal::Cartesian_ranges<Self> cartesian_range;
|
|
|
|
// init bbox with first values found
|
|
{
|
|
const typename Self::Point_d& point = get(m_point_map, *(m_points.begin()));
|
|
std::size_t i = 0;
|
|
for (const typename Self::FT& x: cartesian_range(point)) {
|
|
bbox_min[i] = x;
|
|
bbox_max[i] = x;
|
|
++i;
|
|
}
|
|
}
|
|
// Expand bbox to contain all points
|
|
for (const auto& p: m_points) {
|
|
const typename Self::Point_d& point = get(m_point_map, p);
|
|
std::size_t i = 0;
|
|
for (const typename Self::FT& x: cartesian_range(point)) {
|
|
bbox_min[i] = (std::min)(x, bbox_min[i]);
|
|
bbox_max[i] = (std::max)(x, bbox_max[i]);
|
|
++i;
|
|
}
|
|
}
|
|
|
|
#if !defined(_MSC_VER) || _MSC_VER > 1920
|
|
if constexpr (hypercubic_nodes) {
|
|
#else
|
|
if (hypercubic_nodes) {
|
|
#endif
|
|
std::array<typename Self::FT, Self::dimension> center;
|
|
typename Self::FT max_side = 0;
|
|
for (int i = 0; i < Self::dimension; i++) {
|
|
typename Self::FT side = bbox_max[i] - bbox_min[i];
|
|
max_side = (std::max<typename Self::FT>)(max_side, side);
|
|
center[i] = (bbox_min[i] + bbox_max[i]) * 0.5f;
|
|
}
|
|
max_side *= 0.5f;
|
|
for (int i = 0; i < Self::dimension; i++) {
|
|
bbox_min[i] = center[i] - max_side;
|
|
bbox_max[i] = center[i] + max_side;
|
|
}
|
|
}
|
|
|
|
return {std::apply(Self::construct_point_d_object(), bbox_min),
|
|
std::apply(Self::construct_point_d_object(), bbox_max)};
|
|
};
|
|
}
|
|
|
|
struct Construct_root_node_contents {
|
|
PointRange& m_points;
|
|
Construct_root_node_contents(PointRange& points) : m_points(points) {}
|
|
typename Self::Node_data operator()() {
|
|
return { m_points.begin(), m_points.end() };
|
|
}
|
|
};
|
|
|
|
Construct_root_node_contents construct_root_node_contents_object() const {
|
|
return Construct_root_node_contents(m_points);
|
|
}
|
|
|
|
struct Distribute_node_contents {
|
|
const PointMap m_point_map;
|
|
Distribute_node_contents(const PointMap& point_map) : m_point_map(point_map) {}
|
|
void operator()(Node_index n, Tree& tree, const typename Self::Point_d& center) {
|
|
CGAL_precondition(!tree.is_leaf(n));
|
|
reassign_points(tree, m_point_map, n, center, tree.data(n));
|
|
};
|
|
};
|
|
|
|
Distribute_node_contents distribute_node_contents_object() const {
|
|
return Distribute_node_contents(m_point_map);
|
|
}
|
|
|
|
using Construct_sphere_d = typename Self::Sphere_d(*)(const typename Self::Point_d&, const typename Self::FT&);
|
|
|
|
Construct_sphere_d construct_sphere_d_object() const {
|
|
return [](const typename Self::Point_d& center, const typename Self::FT& squared_radius) -> typename Self::Sphere_d {
|
|
return typename Self::Sphere_d(center, squared_radius);
|
|
};
|
|
}
|
|
|
|
using Construct_center_d = typename Self::Point_d(*)(const typename Self::Sphere_d&);
|
|
|
|
Construct_center_d construct_center_d_object() const {
|
|
return [](const typename Self::Sphere_d& sphere) -> typename Self::Point_d {
|
|
return sphere.center();
|
|
};
|
|
}
|
|
|
|
using Compute_squared_radius_d = typename Self::FT(*)(const typename Self::Sphere_d&);
|
|
|
|
Compute_squared_radius_d compute_squared_radius_d_object() const {
|
|
return [](const typename Self::Sphere_d& sphere) -> typename Self::FT {
|
|
return sphere.squared_radius();
|
|
};
|
|
}
|
|
|
|
struct Squared_distance_of_element {
|
|
const PointMap m_point_map;
|
|
Squared_distance_of_element(const PointMap& point_map) : m_point_map(point_map) {}
|
|
typename Self::FT operator()(const Node_data_element& index, const typename Self::Point_d& point) {
|
|
return CGAL::squared_distance(get(m_point_map, index), point);
|
|
};
|
|
};
|
|
|
|
Squared_distance_of_element squared_distance_of_element_object() const {
|
|
return Squared_distance_of_element(m_point_map);
|
|
}
|
|
|
|
PointRange& m_points;
|
|
PointMap m_point_map;
|
|
};
|
|
|
|
}
|
|
|
|
|
|
#endif //ORTHTREE_TESTS_ORTHTREE_TRAITS_POINT_H
|