cgal/Point_set_processing_3/include/CGAL/remove_outliers.h

310 lines
11 KiB
C++

// Copyright (c) 2007-09 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute point_it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Laurent Saboret and Nader Salman and Pierre Alliez
#ifndef CGAL_REMOVE_OUTLIERS_H
#define CGAL_REMOVE_OUTLIERS_H
#include <CGAL/Search_traits_3.h>
#include <CGAL/Orthogonal_k_neighbor_search.h>
#include <iterator>
#include <algorithm>
#include <map>
CGAL_BEGIN_NAMESPACE
// ----------------------------------------------------------------------------
// Private section
// ----------------------------------------------------------------------------
namespace CGALi {
/// Utility function for remove_outliers():
/// compute average squared distance to the K nearest neighbors.
///
/// @commentheading Precondition: k >= 2.
///
/// @commentheading Template Parameters:
/// @param Kernel Geometric traits class.
/// @param Tree KD-tree.
///
/// @return computed distance.
template < typename Kernel,
typename Tree >
typename Kernel::FT
compute_avg_knn_sq_distance_3(
const typename Kernel::Point_3& query, ///< 3D point to project
Tree& tree, ///< KD-tree
unsigned int k) ///< number of neighbors
{
// geometric types
typedef typename Kernel::FT FT;
typedef typename Kernel::Point_3 Point;
// types for K nearest neighbors search
typedef typename CGAL::Search_traits_3<Kernel> Tree_traits;
typedef typename CGAL::Orthogonal_k_neighbor_search<Tree_traits> Neighbor_search;
typedef typename Neighbor_search::iterator Search_iterator;
// Gather set of (k+1) neighboring points.
// Perform k+1 queries (if in point set, the query point is
// output first). Search may be aborted when k is greater
// than number of input points.
std::vector<Point> points; points.reserve(k+1);
Neighbor_search search(tree,query,k+1);
Search_iterator search_iterator = search.begin();
unsigned int i;
for(i=0;i<(k+1);i++)
{
if(search_iterator == search.end())
break; // premature ending
points.push_back(search_iterator->first);
search_iterator++;
}
CGAL_precondition(points.size() >= 1);
// compute average squared distance
typename Kernel::Compute_squared_distance_3 sqd;
FT sq_distance = (FT)0.0;
for(typename std::vector<Point>::iterator neighbor = points.begin(); neighbor != points.end(); neighbor++)
sq_distance += sqd(*neighbor, query);
sq_distance /= FT(points.size());
return sq_distance;
}
} /* namespace CGALi */
// ----------------------------------------------------------------------------
// Public section
// ----------------------------------------------------------------------------
/// Remove outliers:
/// - compute average squared distance to the K nearest neighbors,
/// - output (100-threshold_percent) % best points wrt this distance.
/// This variant requires the kernel.
///
/// @commentheading Precondition: k >= 2.
///
/// @commentheading Template Parameters:
/// @param InputIterator value_type must be convertible to Point_3<Kernel>.
/// @param OutputIterator value_type must be convertible from InputIterator's value_type.
/// @param Kernel Geometric traits class.
///
/// @return past-the-end output iterator.
template <typename InputIterator,
typename OutputIterator,
typename Kernel
>
OutputIterator
remove_outliers(
InputIterator first, ///< iterator over the first input point.
InputIterator beyond, ///< past-the-end iterator over input points.
OutputIterator output, ///< iterator over the first output point.
unsigned int k, ///< number of neighbors.
const Kernel& kernel, ///< geometric traits.
double threshold_percent) ///< percentage of points to remove.
{
// geometric types
typedef typename Kernel::FT FT;
typedef typename std::iterator_traits<InputIterator>::value_type Point;
// types for K nearest neighbors search structure
typedef typename CGAL::Search_traits_3<Kernel> Tree_traits;
typedef typename CGAL::Orthogonal_k_neighbor_search<Tree_traits> Neighbor_search;
typedef typename Neighbor_search::Tree Tree;
typedef typename Neighbor_search::iterator Search_iterator;
// precondition: at least one element in the container.
// to fix: should have at least three distinct points
// but this is costly to check
CGAL_precondition(first != beyond);
// precondition: at least 2 nearest neighbors
CGAL_precondition(k >= 2);
CGAL_precondition(threshold_percent >= 0 && threshold_percent <= 100);
// instanciate a KD-tree search
Tree tree(first,beyond);
// iterate over input points and add them to multimap sorted by distance to k
std::multimap<FT,Point> sorted_points;
for(InputIterator point_it = first; point_it != beyond; point_it++)
{
FT sq_distance = CGALi::compute_avg_knn_sq_distance_3<Kernel>(*point_it,tree,k);
sorted_points.insert( std::make_pair(sq_distance,*point_it) );
}
// output (100-threshold_percent) % best points
int first_index_to_remove = int(double(sorted_points.size()) * ((100.0-threshold_percent)/100.0));
typename std::multimap<FT,Point>::iterator src;
int index;
for (src = sorted_points.begin(), index = 0;
index < first_index_to_remove;
++src, ++index)
{
*output++ = src->second;
}
return output;
}
/// Remove outliers:
/// - compute average squared distance to the K nearest neighbors,
/// - sort the points in increasing order of average distance.
/// This function is mutating the input point set.
/// This variant requires the kernel.
///
/// Warning:
/// This method modifies the order of points, thus
/// should not be called on sorted containers.
///
/// @commentheading Precondition: k >= 2.
///
/// @commentheading Template Parameters:
/// @param ForwardIterator value_type must be convertible to Point_3<Kernel>.
/// @param Kernel Geometric traits class.
///
/// @return First iterator to remove (see erase-remove idiom).
template <typename ForwardIterator,
typename Kernel
>
ForwardIterator
remove_outliers(
ForwardIterator first, ///< iterator over the first input/output point.
ForwardIterator beyond, ///< past-the-end iterator.
unsigned int k, ///< number of neighbors.
const Kernel& kernel, ///< geometric traits.
double threshold_percent) ///< percentage of points to remove.
{
// geometric types
typedef typename Kernel::FT FT;
typedef typename std::iterator_traits<ForwardIterator>::value_type Point;
// types for K nearest neighbors search structure
typedef typename CGAL::Search_traits_3<Kernel> Tree_traits;
typedef typename CGAL::Orthogonal_k_neighbor_search<Tree_traits> Neighbor_search;
typedef typename Neighbor_search::Tree Tree;
typedef typename Neighbor_search::iterator Search_iterator;
// precondition: at least one element in the container.
// to fix: should have at least three distinct points
// but this is costly to check
CGAL_precondition(first != beyond);
// precondition: at least 2 nearest neighbors
CGAL_precondition(k >= 2);
CGAL_precondition(threshold_percent >= 0 && threshold_percent <= 100);
// instanciate a KD-tree search
Tree tree(first,beyond);
// iterate over input points and add them to multimap sorted by distance to k
std::multimap<FT,Point> sorted_points;
for(ForwardIterator point_it = first; point_it != beyond; point_it++)
{
FT sq_distance = CGALi::compute_avg_knn_sq_distance_3<Kernel>(*point_it,tree,k);
sorted_points.insert( std::make_pair(sq_distance,*point_it) );
}
// Replace [first, beyond) range by the multimap content.
// Return the iterator after the (100-threshold_percent) % best points.
ForwardIterator first_iterator_to_remove = beyond;
ForwardIterator dst = first;
int first_index_to_remove = int(double(sorted_points.size()) * ((100.0-threshold_percent)/100.0));
typename std::multimap<FT,Point>::iterator src;
int index;
for (src = sorted_points.begin(), index = 0;
src != sorted_points.end();
++src, ++index)
{
*dst++ = src->second;
if (index == first_index_to_remove)
first_iterator_to_remove = dst;
}
return first_iterator_to_remove;
}
/// Remove outliers:
/// - compute average squared distance to the K nearest neighbors,
/// - output (100-threshold_percent) % best points wrt this distance.
/// This variant deduces the kernel from iterator types.
///
/// @commentheading Precondition: k >= 2.
///
/// @commentheading Template Parameters:
/// @param InputIterator value_type must be convertible to Point_3<Kernel>.
/// @param OutputIterator value_type must be convertible from InputIterator's value_type.
///
/// @return past-the-end output iterator.
template <typename InputIterator,
typename OutputIterator
>
OutputIterator
remove_outliers(
InputIterator first, ///< iterator over the first input point
InputIterator beyond, ///< past-the-end iterator over input points
OutputIterator output, ///< iterator over the first output point
unsigned int k, ///< number of neighbors
double threshold_percent) ///< percentage of points to remove
{
typedef typename std::iterator_traits<InputIterator>::value_type Value_type;
typedef typename Kernel_traits<Value_type>::Kernel Kernel;
return remove_outliers(first,beyond,output,k,Kernel(),threshold_percent);
}
/// Remove outliers:
/// - compute average squared distance to the k nearest neighbors,
/// - sort the points in increasing order of average distance.
/// This function is mutating the input point set.
/// This variant deduces the kernel from iterator types.
///
/// Warning:
/// This method modifies the order of points, thus
/// should not be called on sorted containers.
///
/// @commentheading Precondition: k >= 2.
///
/// @commentheading Template Parameters:
/// @param ForwardIterator value_type must be convertible to Point_3<Kernel>.
///
/// @return First iterator to remove (see erase-remove idiom).
template <typename ForwardIterator>
ForwardIterator
remove_outliers(
ForwardIterator first, ///< iterator over the first input/output point
ForwardIterator beyond, ///< past-the-end iterator
unsigned int k, ///< number of neighbors
double threshold_percent) ///< percentage of points to remove
{
typedef typename std::iterator_traits<ForwardIterator>::value_type Value_type;
typedef typename Kernel_traits<Value_type>::Kernel Kernel;
return remove_outliers(first,beyond,k,Kernel(),threshold_percent);
}
CGAL_END_NAMESPACE
#endif // CGAL_REMOVE_OUTLIERS_H