cgal/NewKernel_d/include/CGAL/Kernel_d/Wrapper/Cartesian_wrap.h

263 lines
9.6 KiB
C++

#ifndef CGAL_KERNEL_D_CARTESIAN_WRAP_H
#define CGAL_KERNEL_D_CARTESIAN_WRAP_H
#include <CGAL/basic.h>
#include <CGAL/is_iterator.h>
#include <CGAL/Kernel_d/Wrapper/Point_d.h>
#include <CGAL/Kernel_d/Wrapper/Vector_d.h>
#include <CGAL/Kernel_d/Wrapper/Segment_d.h>
#include <CGAL/Kernel_d/Wrapper/Sphere_d.h>
#include <CGAL/Kernel_d/Wrapper/Ref_count_obj.h>
#include <boost/mpl/or.hpp>
#include <boost/mpl/contains.hpp>
#include <boost/mpl/vector.hpp>
//TODO: do we want to store the kernel ref in the Object wrappers? It would allow for additions and operator[] and things like that to work, but objects would still need to be created by functors.
namespace CGAL {
namespace internal {
BOOST_MPL_HAS_XXX_TRAIT_DEF(Is_wrapper)
template<class T,bool=has_Is_wrapper<T>::value> struct Is_wrapper {
enum { value=false };
typedef Tag_false type;
};
template<class T> struct Is_wrapper<T,true> {
typedef typename T::Is_wrapper type;
enum { value=type::value };
};
template<class T,bool=is_iterator<T>::value> struct Is_wrapper_iterator {
enum { value=false };
typedef Tag_false type;
};
template<class T> struct Is_wrapper_iterator<T,true> :
Is_wrapper<typename std::iterator_traits<T>::value_type>
{ };
struct Forward_rep {
//TODO: make a good C++0X version with perfect forwarding
//#ifdef CGAL_CXX0X
//template <class T,class=typename std::enable_if<!Is_wrapper<typename std::decay<T>::type>::value&&!Is_wrapper_iterator<typename std::decay<T>::type>::value>::type>
//T&& operator()(typename std::remove_reference<T>::type&& t) const {return static_cast<T&&>(t);};
//template <class T,class=typename std::enable_if<!Is_wrapper<typename std::decay<T>::type>::value&&!Is_wrapper_iterator<typename std::decay<T>::type>::value>::type>
//T&& operator()(typename std::remove_reference<T>::type& t) const {return static_cast<T&&>(t);};
//
//template <class T,class=typename std::enable_if<Is_wrapper<typename std::decay<T>::type>::value>::type>
//typename Type_copy_cvref<T,typename std::decay<T>::type::Rep>::type&&
//operator()(T&& t) const {
// return static_cast<typename Type_copy_cvref<T,typename std::decay<T>::type::Rep>::type&&>(t.rep());
//};
//
//template <class T,class=typename std::enable_if<Is_wrapper_iterator<typename std::decay<T>::type>::value>::type>
//transforming_iterator<Forward_rep,typename std::decay<T>::type>
//operator()(T&& t) const {
// return make_transforming_iterator(std::forward<T>(t),Forward_rep());
//};
//#else
template <class T,bool=Is_wrapper<T>::value,bool=Is_wrapper_iterator<T>::value> struct result_;
template <class T> struct result_<T,false,false>{typedef T const& type;};
template <class T> struct result_<T,true,false>{typedef typename decay<T>::type::Rep const& type;};
template <class T> struct result_<T,false,true>{typedef transforming_iterator<Forward_rep,typename decay<T>::type> type;};
template<class> struct result;
template<class T> struct result<Forward_rep(T)> : result_<T> {};
template <class T> typename boost::disable_if<boost::mpl::or_<Is_wrapper<T>,Is_wrapper_iterator<T> >,T>::type const& operator()(T const& t) const {return t;}
template <class T> typename boost::enable_if<Is_wrapper<T>,T>::type::Rep const& operator()(T const& t) const {return t.rep();}
template <class T> transforming_iterator<Forward_rep,typename boost::enable_if<Is_wrapper_iterator<T>,T>::type> operator()(T const& t) const {return make_transforming_iterator(t,Forward_rep());}
//#endif
};
}
template <class B, class K, class T, bool = Provides_type<B, T>::value>
struct Map_wrapping_type : Get_type<B, T> {};
#define CGAL_REGISTER_OBJECT_WRAPPER(X) \
template <class B, class K> \
struct Map_wrapping_type <B, K, X##_tag, true> { \
typedef X##_d<K> type; \
}
CGAL_REGISTER_OBJECT_WRAPPER(Point);
CGAL_REGISTER_OBJECT_WRAPPER(Vector);
CGAL_REGISTER_OBJECT_WRAPPER(Segment);
CGAL_REGISTER_OBJECT_WRAPPER(Sphere);
#undef CGAL_REGISTER_OBJECT_WRAPPER
// Note: this tends to be an all or nothing thing currently, wrapping
// only some types breaks, probably because we don't check whether the
// return type is indeed wrapped.
template < typename Base_ , typename Derived_ = Default >
struct Cartesian_wrap : public Base_
{
CGAL_CONSTEXPR Cartesian_wrap(){}
CGAL_CONSTEXPR Cartesian_wrap(int d):Base_(d){}
typedef Base_ Kernel_base;
typedef Cartesian_wrap Self;
typedef typename Default::Get<Derived_, Self>::type Derived;
// FIXME: The list doesn't belong here.
typedef boost::mpl::vector<Point_tag,Segment_tag,Sphere_tag,Vector_tag> Wrapped_list;
template <class T>
struct Type : Map_wrapping_type<Base_, Derived, T> {};
//Translate the arguments
template <class T, class D = void,
class=typename Get_functor_category<Derived,T>::type,
bool=Provides_functor<Kernel_base, T>::value,
bool=boost::mpl::contains<Wrapped_list,typename map_result_tag<T>::type>::type::value>
struct Functor {
typedef typename Get_functor<Kernel_base, T>::type B;
struct type {
B b;
type(){}
type(Self const&k):b(k){}
typedef typename B::result_type result_type;
#ifdef CGAL_CXX0X
template<class...U> result_type operator()(U&&...u)const{
return b(internal::Forward_rep()(u)...);
}
#else
#define VAR(Z,N,_) internal::Forward_rep()(u##N)
#define CODE(Z,N,_) template<BOOST_PP_ENUM_PARAMS(N,class U)> result_type \
operator()(BOOST_PP_ENUM_BINARY_PARAMS(N,U,const&u))const{ \
return b(BOOST_PP_ENUM(N,VAR,)); \
}
BOOST_PP_REPEAT_FROM_TO(1,11,CODE,_)
#undef CODE
#undef VAR
#endif
};
};
// Preserve the difference between Null_functor and nothing.
template <class T, class D, class C, bool b>
struct Functor <T, D, C, false, b>
: Get_functor <Kernel_base, T> {};
//Translate both the arguments and the result
//TODO: Check Is_wrapper instead of relying on map_result_tag?
template<class T,class D> struct Functor<T,D,Construct_tag,true,true> {
typedef typename Get_functor<Kernel_base, T>::type B;
struct type {
B b;
type(){}
type(Self const&k):b(k){}
typedef typename map_result_tag<T>::type result_tag;
// FIXME: Self or Derived?
typedef typename Get_type<Self,result_tag>::type result_type;
#ifdef CGAL_CXX0X
template<class...U> result_type operator()(U&&...u)const{
return result_type(Eval_functor(),b,internal::Forward_rep()(u)...);
}
#else
#define VAR(Z,N,_) internal::Forward_rep()(u##N)
#define CODE(Z,N,_) template<BOOST_PP_ENUM_PARAMS(N,class U)> result_type \
operator()(BOOST_PP_ENUM_BINARY_PARAMS(N,U,const&u))const{ \
return result_type(Eval_functor(),b,BOOST_PP_ENUM(N,VAR,)); \
}
BOOST_PP_REPEAT_FROM_TO(1,11,CODE,_)
#undef CODE
#undef VAR
#endif
};
};
};
template < typename Base_ >
struct Cartesian_refcount : public Base_
{
CGAL_CONSTEXPR Cartesian_refcount(){}
CGAL_CONSTEXPR Cartesian_refcount(int d):Base_(d){}
typedef Base_ Kernel_base;
typedef Cartesian_refcount Self;
// FIXME: Use object_list, or a list passed as argument, or anything
// automatic.
template <class T, class=void> struct Type : Get_type<Base_, T> {};
#define CGAL_Kernel_obj(X,Y) \
template <class D> struct Type<X##_tag, D> { typedef Ref_count_obj<Cartesian_refcount, X##_tag> type; };
CGAL_Kernel_obj(Point,point)
CGAL_Kernel_obj(Vector,vector)
#undef CGAL_Kernel_obj
template<class T> struct Dispatch {
//typedef typename map_functor_type<T>::type f_t;
typedef typename map_result_tag<T>::type r_t;
enum {
is_nul = boost::is_same<typename Get_functor<Kernel_base, T>::type,Null_functor>::value,
ret_rcobj = boost::is_same<r_t,Point_tag>::value || boost::is_same<r_t,Vector_tag>::value
};
};
//Translate the arguments
template<class T,class D=void,bool=Dispatch<T>::is_nul,bool=Dispatch<T>::ret_rcobj> struct Functor {
typedef typename Get_functor<Kernel_base, T>::type B;
struct type {
B b;
type(){}
type(Self const&k):b(k){}
typedef typename B::result_type result_type;
#ifdef CGAL_CXX0X
template<class...U> result_type operator()(U&&...u)const{
return b(internal::Forward_rep()(u)...);
}
#else
result_type operator()()const{
return b();
}
#define VAR(Z,N,_) internal::Forward_rep()(u##N)
#define CODE(Z,N,_) template<BOOST_PP_ENUM_PARAMS(N,class U)> result_type \
operator()(BOOST_PP_ENUM_BINARY_PARAMS(N,U,const&u))const{ \
return b(BOOST_PP_ENUM(N,VAR,)); \
}
BOOST_PP_REPEAT_FROM_TO(1,11,CODE,_)
#undef CODE
#undef VAR
#endif
};
};
//Translate both the arguments and the result
template<class T,class D,bool b> struct Functor<T,D,true,b> {
typedef Null_functor type;
};
template<class T,class D> struct Functor<T,D,false,true> {
typedef typename Get_functor<Kernel_base, T>::type B;
struct type {
B b;
type(){}
type(Self const&k):b(k){}
typedef typename map_result_tag<T>::type result_tag;
typedef typename Get_type<Self,result_tag>::type result_type;
#ifdef CGAL_CXX0X
template<class...U> result_type operator()(U&&...u)const{
return result_type(Eval_functor(),b,internal::Forward_rep()(u)...);
}
#else
result_type operator()()const{
return result_type(Eval_functor(),b);
}
#define VAR(Z,N,_) internal::Forward_rep()(u##N)
#define CODE(Z,N,_) template<BOOST_PP_ENUM_PARAMS(N,class U)> result_type \
operator()(BOOST_PP_ENUM_BINARY_PARAMS(N,U,const&u))const{ \
return result_type(Eval_functor(),b,BOOST_PP_ENUM(N,VAR,)); \
}
BOOST_PP_REPEAT_FROM_TO(1,11,CODE,_)
#undef CODE
#undef VAR
#endif
};
};
};
} //namespace CGAL
#endif // CGAL_KERNEL_D_CARTESIAN_WRAP_H