cgal/Polyhedron/demo/Polyhedron/Scene_polyhedron_selection_...

2677 lines
86 KiB
C++

#include <QApplication>
#include <QUndoCommand>
#include <QUndoStack>
#include "Scene_polyhedron_selection_item.h"
#include <CGAL/Polygon_mesh_processing/compute_normal.h>
#include <CGAL/Polygon_mesh_processing/repair.h>
#include <CGAL/Polygon_mesh_processing/shape_predicates.h>
#include <boost/graph/dijkstra_shortest_paths.hpp>
#include <CGAL/boost/graph/helpers.h>
#include <CGAL/property_map.h>
#include <CGAL/Handle_hash_function.h>
#include <CGAL/Unique_hash_map.h>
#include <CGAL/statistics_helpers.h>
#include <boost/range.hpp>
#include <CGAL/Three/Triangle_container.h>
#include <CGAL/Three/Edge_container.h>
#include <CGAL/Three/Point_container.h>
#include <CGAL/Three/Three.h>
#include <exception>
#include <functional>
#include <limits>
#include <set>
#include <utility>
#include <vector>
#include <functional>
#include <unordered_map>
#include <unordered_set>
#include "triangulate_primitive.h"
#include <CGAL/boost/graph/Face_filtered_graph.h>
#include <CGAL/Polygon_mesh_processing/measure.h>
#include <CGAL/boost/graph/properties.h>
using namespace CGAL::Three;
typedef Viewer_interface Vi;
typedef Triangle_container Tc;
typedef Edge_container Ec;
typedef Point_container Pc;
typedef Scene_surface_mesh_item Scene_face_graph_item;
typedef Scene_face_graph_item::Face_graph Face_graph;
typedef boost::property_map<Face_graph,CGAL::vertex_point_t>::type VPmap;
typedef boost::property_map<Face_graph,CGAL::vertex_point_t>::const_type constVPmap;
typedef Scene_face_graph_item::Vertex_selection_map Vertex_selection_map;
typedef boost::graph_traits<Face_graph>::vertex_descriptor fg_vertex_descriptor;
typedef boost::graph_traits<Face_graph>::face_descriptor fg_face_descriptor;
typedef boost::graph_traits<Face_graph>::edge_descriptor fg_edge_descriptor;
typedef boost::graph_traits<Face_graph>::halfedge_descriptor fg_halfedge_descriptor;
class EulerOperation : public QUndoCommand
{
std::function<void ()> undo_;
Scene_polyhedron_selection_item* item;
public:
template <typename Undo>
EulerOperation(Undo&& undo, Scene_polyhedron_selection_item* item)
:undo_(std::forward<Undo> (undo)),
item(item)
{}
void undo() override
{
undo_();
item->compute_normal_maps();
item->invalidateOpenGLBuffers();
item->redraw();
}
void redo() override
{}
};
struct Scene_polyhedron_selection_item_priv{
typedef Scene_facegraph_item_k_ring_selection::Active_handle Active_handle;
typedef std::unordered_set<fg_vertex_descriptor> Selection_set_vertex;
typedef std::unordered_set<fg_face_descriptor> Selection_set_facet;
typedef std::unordered_set<fg_edge_descriptor> Selection_set_edge;
struct vertex_on_path
{
fg_vertex_descriptor vertex;
bool is_constrained;
};
Scene_polyhedron_selection_item_priv(Scene_polyhedron_selection_item* parent):
item(parent)
{
filtered_graph = nullptr;
item->setProperty("classname", QString("surface_mesh_selection"));
keep_selection_valid = Scene_polyhedron_selection_item::None;
}
void initializeBuffers(CGAL::Three::Viewer_interface *viewer) const;
void initialize_temp_buffers(CGAL::Three::Viewer_interface *viewer) const;
void initialize_HL_buffers(CGAL::Three::Viewer_interface *viewer) const;
void computeElements() const;
void compute_any_elements(std::vector<float> &p_facets,
std::vector<float> &p_lines, std::vector<float> &p_points,
std::vector<float> &p_normals,
const Selection_set_vertex& p_sel_vertex,
const Selection_set_facet &p_sel_facet,
const Selection_set_edge &p_sel_edges) const;
void compute_temp_elements() const;
void compute_HL_elements() const;
void triangulate_facet(fg_face_descriptor, EPICK::Vector_3 normal,
std::vector<float> &p_facets,std::vector<float> &p_normals) const;
void tempInstructions(QString s1, QString s2);
void computeAndDisplayPath();
void addVertexToPath(fg_vertex_descriptor, vertex_on_path &);
QList<vertex_on_path> path;
QList<fg_vertex_descriptor> constrained_vertices;
bool is_path_selecting;
bool poly_need_update;
mutable bool are_temp_buffers_filled;
//Specifies Selection/edition mode
bool first_selected;
int operation_mode;
QString m_temp_instructs;
bool is_treated;
fg_vertex_descriptor to_split_vh;
fg_face_descriptor to_split_fh;
fg_edge_descriptor to_join_ed;
Active_handle::Type original_sel_mode;
//Only needed for the triangulation
Face_graph* poly;
CGAL::Unique_hash_map<fg_face_descriptor, EPICK::Vector_3> face_normals_map;
CGAL::Unique_hash_map<fg_vertex_descriptor, EPICK::Vector_3> vertex_normals_map;
boost::associative_property_map< CGAL::Unique_hash_map<fg_face_descriptor, EPICK::Vector_3> >
nf_pmap;
boost::associative_property_map< CGAL::Unique_hash_map<fg_vertex_descriptor, EPICK::Vector_3> >
nv_pmap;
Scene_face_graph_item::ManipulatedFrame *manipulated_frame;
bool ready_to_move;
Vertex_selection_map vertex_selection_map()
{
return item->poly_item->vertex_selection_map();
}
Face_graph* polyhedron() { return poly; }
const Face_graph* polyhedron()const { return poly; }
void set_num_faces(const std::size_t n) { num_faces = n; }
bool canAddFace(fg_halfedge_descriptor hc, Scene_polyhedron_selection_item::fg_halfedge_descriptor t);
bool canAddFaceAndVertex(Scene_polyhedron_selection_item::fg_halfedge_descriptor hc,
Scene_polyhedron_selection_item::fg_halfedge_descriptor t);
mutable std::vector<float> positions_facets;
mutable std::vector<float> normals;
mutable std::vector<float> positions_lines;
mutable std::vector<float> positions_points;
mutable std::size_t nb_facets;
mutable std::size_t nb_points;
mutable std::size_t nb_lines;
mutable std::vector<float> positions_temp_facets;
mutable std::vector<float> positions_fixed_points;
mutable std::vector<float> color_fixed_points;
mutable std::vector<float> temp_normals;
mutable std::vector<float> positions_temp_lines;
mutable std::vector<float> positions_temp_points;
mutable std::vector<float> positions_HL_facets;
mutable std::vector<float> HL_normals;
mutable std::vector<float> positions_HL_lines;
mutable std::vector<float> positions_HL_points;
mutable std::size_t nb_temp_facets;
mutable std::size_t nb_temp_points;
mutable std::size_t nb_temp_lines;
mutable std::size_t nb_fixed_points;
mutable bool are_HL_buffers_filled;
Scene_polyhedron_selection_item* item;
enum TriangleNames{
Facets = 0,
Temp_facets,
HL_facets
};
enum EdgeNames{
Edges = 0,
Temp_edges,
HL_edges
};
enum PointNames{
Points = 0,
Temp_points,
HL_points,
Fixed_points
};
QUndoStack stack;
CGAL::Face_filtered_graph<SMesh> *filtered_graph;
std::size_t num_faces;
std::size_t num_vertices;
std::size_t num_edges;
Scene_polyhedron_selection_item::SelectionTypes keep_selection_valid;
};
typedef Scene_polyhedron_selection_item_priv Priv;
void Scene_polyhedron_selection_item_priv::initializeBuffers(CGAL::Three::Viewer_interface *viewer)const
{
item->getTriangleContainer(Facets)->initializeBuffers(viewer);
item->getTriangleContainer(Facets)->setFlatDataSize(nb_facets);
item->getEdgeContainer(Edges)->initializeBuffers(viewer);
item->getEdgeContainer(Edges)->setFlatDataSize(nb_lines);
item->getPointContainer(Points)->initializeBuffers(viewer);
item->getPointContainer(Points)->setFlatDataSize(nb_points);
positions_facets.resize(0);
positions_facets.shrink_to_fit();
normals.resize(0);
normals.shrink_to_fit();
positions_lines.resize(0);
positions_lines.shrink_to_fit();
positions_points.resize(0);
positions_points.shrink_to_fit();
}
void Scene_polyhedron_selection_item_priv::initialize_temp_buffers(CGAL::Three::Viewer_interface *viewer)const
{
item->getTriangleContainer(Temp_facets)->initializeBuffers(viewer);
item->getTriangleContainer(Temp_facets)->setFlatDataSize(nb_temp_facets);
item->getEdgeContainer(Temp_edges)->initializeBuffers(viewer);
item->getEdgeContainer(Temp_edges)->setFlatDataSize(nb_temp_lines);
item->getPointContainer(Temp_points)->initializeBuffers(viewer);
item->getPointContainer(Temp_points)->setFlatDataSize(nb_temp_points);
item->getPointContainer(Fixed_points)->initializeBuffers(viewer);
item->getPointContainer(Fixed_points)->setFlatDataSize(nb_fixed_points);
positions_temp_facets.resize(0);
std::vector<float>(positions_temp_facets).swap(positions_temp_facets);
temp_normals.resize(0);
std::vector<float>(temp_normals).swap(temp_normals);
positions_temp_lines.resize(0);
std::vector<float>(positions_temp_lines).swap(positions_temp_lines);
positions_temp_points.resize(0);
std::vector<float>(positions_temp_points).swap(positions_temp_points);
positions_fixed_points.resize(0);
std::vector<float>(positions_fixed_points).swap(positions_fixed_points);
}
void Scene_polyhedron_selection_item_priv::initialize_HL_buffers(CGAL::Three::Viewer_interface *viewer)const
{
item->getTriangleContainer(HL_facets)->initializeBuffers(viewer);
item->getTriangleContainer(HL_facets)->setFlatDataSize(positions_HL_facets.size());
item->getEdgeContainer(HL_edges)->initializeBuffers(viewer);
item->getEdgeContainer(HL_edges)->setFlatDataSize(positions_HL_lines.size());
item->getPointContainer(HL_points)->initializeBuffers(viewer);
item->getPointContainer(HL_points)->setFlatDataSize(positions_HL_points.size());
}
template<typename TypeWithXYZ, typename ContainerWithPushBack>
void push_back_xyz(const TypeWithXYZ& t,
ContainerWithPushBack& vector)
{
vector.push_back(t.x());
vector.push_back(t.y());
vector.push_back(t.z());
}
typedef EPICK Traits;
//Make sure all the facets are triangles
typedef Traits::Point_3 Point_3;
typedef Traits::Point_3 Point;
typedef Traits::Vector_3 Vector;
void
Scene_polyhedron_selection_item_priv::triangulate_facet(fg_face_descriptor fit,const Vector normal,
std::vector<float> &p_facets,std::vector<float> &p_normals ) const
{
const CGAL::qglviewer::Vec off = Three::mainViewer()->offset();
EPICK::Vector_3 offset(off.x,off.y,off.z);
typedef FacetTriangulator<Face_graph, EPICK, fg_vertex_descriptor> FT;
FT triangulation(fit,normal,poly, offset);
//iterates on the internal faces to add the vertices to the positions
//and the normals to the appropriate vectors
for(FT::CDT::Finite_faces_iterator
ffit = triangulation.cdt->finite_faces_begin(),
end = triangulation.cdt->finite_faces_end();
ffit != end; ++ffit)
{
if(ffit->info().is_external)
continue;
push_back_xyz(ffit->vertex(0)->point(), p_facets);
push_back_xyz(ffit->vertex(1)->point(), p_facets);
push_back_xyz(ffit->vertex(2)->point(), p_facets);
push_back_xyz(normal, p_normals);
push_back_xyz(normal, p_normals);
push_back_xyz(normal, p_normals);
}
}
void Scene_polyhedron_selection_item_priv::compute_any_elements(std::vector<float>& p_facets, std::vector<float>& p_lines, std::vector<float>& p_points, std::vector<float>& p_normals,
const Selection_set_vertex& p_sel_vertices, const Selection_set_facet& p_sel_facets, const Selection_set_edge& p_sel_edges)const
{
const CGAL::qglviewer::Vec offset = Three::mainViewer()->offset();
p_facets.clear();
p_lines.clear();
p_points.clear();
p_normals.clear();
//The facet
if(!poly)
return;
VPmap vpm = get(CGAL::vertex_point,*poly);
for(Selection_set_facet::const_iterator
it = p_sel_facets.begin(),
end = p_sel_facets.end();
it != end; it++)
{
fg_face_descriptor f = (*it);
if (f == boost::graph_traits<Face_graph>::null_face())
continue;
Vector nf = get(nf_pmap, f);
if(is_triangle(halfedge(f,*poly),*poly))
{
p_normals.push_back(nf.x());
p_normals.push_back(nf.y());
p_normals.push_back(nf.z());
p_normals.push_back(nf.x());
p_normals.push_back(nf.y());
p_normals.push_back(nf.z());
p_normals.push_back(nf.x());
p_normals.push_back(nf.y());
p_normals.push_back(nf.z());
for(fg_halfedge_descriptor he : halfedges_around_face(halfedge(f,*polyhedron()), *polyhedron()))
{
const Point& p = get(vpm,target(he,*poly));
p_facets.push_back(p.x()+offset.x);
p_facets.push_back(p.y()+offset.y);
p_facets.push_back(p.z()+offset.z);
}
}
else if (is_quad(halfedge(f,*poly), *poly))
{
EPICK::Vector_3 v_offset(offset.x, offset.y, offset.z);
Vector nf = get(nf_pmap, f);
{
//1st half-quad
const Point& p0 = get(vpm,target(halfedge(f,*poly),*poly));
const Point& p1 = get(vpm,target(next(halfedge(f,*poly),*poly),*poly));
const Point& p2 = get(vpm,target(next(next(halfedge(f,*poly),*poly),*poly),*poly));
push_back_xyz(p0+v_offset, p_facets);
push_back_xyz(p1+v_offset, p_facets);
push_back_xyz(p2+v_offset, p_facets);
push_back_xyz(nf, p_normals);
push_back_xyz(nf, p_normals);
push_back_xyz(nf, p_normals);
}
{
//2nd half-quad
const Point& p0 = get(vpm, target(next(next(halfedge(f,*poly),*poly),*poly),*poly));
const Point& p1 = get(vpm, target(prev(halfedge(f,*poly),*poly),*poly));
const Point& p2 = get(vpm, target(halfedge(f,*poly),*poly));
push_back_xyz(p0+v_offset, p_facets);
push_back_xyz(p1+v_offset, p_facets);
push_back_xyz(p2+v_offset, p_facets);
push_back_xyz(nf, p_normals);
push_back_xyz(nf, p_normals);
push_back_xyz(nf, p_normals);
}
}
else
{
triangulate_facet(f, nf, p_facets, p_normals);
}
}
//The Lines
{
for(Selection_set_edge::const_iterator it = p_sel_edges.begin(); it != p_sel_edges.end(); ++it) {
const Point& a = get(vpm, target(halfedge(*it,*poly),*poly));
const Point& b = get(vpm, target(opposite((halfedge(*it,*poly)),*poly),*poly));
p_lines.push_back(a.x()+offset.x);
p_lines.push_back(a.y()+offset.y);
p_lines.push_back(a.z()+offset.z);
p_lines.push_back(b.x()+offset.x);
p_lines.push_back(b.y()+offset.y);
p_lines.push_back(b.z()+offset.z);
}
}
//The points
{
for(Selection_set_vertex::const_iterator
it = p_sel_vertices.begin(),
end = p_sel_vertices.end();
it != end; ++it)
{
const Point& p = get(vpm, *it);
p_points.push_back(p.x()+offset.x);
p_points.push_back(p.y()+offset.y);
p_points.push_back(p.z()+offset.z);
}
}
}
void Scene_polyhedron_selection_item_priv::computeElements()const
{
QApplication::setOverrideCursor(Qt::WaitCursor);
compute_any_elements(positions_facets, positions_lines, positions_points, normals,
item->selected_vertices, item->selected_facets, item->selected_edges);
item->getTriangleContainer(Facets)->allocate(
Tc::Flat_vertices,
positions_facets.data(),
static_cast<int>(positions_facets.size()*sizeof(float)));
item->getTriangleContainer(Facets)->allocate(
Tc::Flat_normals,
normals.data(),
static_cast<int>(normals.size()*sizeof(float)));
item->getPointContainer(Points)->allocate(
Pc::Vertices,
positions_points.data(),
static_cast<int>(positions_points.size()*sizeof(float)));
item->getEdgeContainer(Edges)->allocate(
Ec::Vertices,
positions_lines.data(),
static_cast<int>(positions_lines.size()*sizeof(float)));
nb_facets = positions_facets.size();
nb_lines = positions_lines.size();
nb_points = positions_points.size();
QApplication::restoreOverrideCursor();
}
void Scene_polyhedron_selection_item_priv::compute_temp_elements()const
{
QApplication::setOverrideCursor(Qt::WaitCursor);
compute_any_elements(positions_temp_facets, positions_temp_lines, positions_temp_points, temp_normals,
item->temp_selected_vertices, item->temp_selected_facets, item->temp_selected_edges);
//The fixed points
{
const CGAL::qglviewer::Vec offset = Three::mainViewer()->offset();
color_fixed_points.clear();
positions_fixed_points.clear();
constVPmap vpm = get(CGAL::vertex_point,*polyhedron());
for(Scene_polyhedron_selection_item::Selection_set_vertex::iterator
it = item->fixed_vertices.begin(),
end = item->fixed_vertices.end();
it != end; ++it)
{
const Point& p = get(vpm,*it);
positions_fixed_points.push_back(p.x()+offset.x);
positions_fixed_points.push_back(p.y()+offset.y);
positions_fixed_points.push_back(p.z()+offset.z);
if(*it == constrained_vertices.first()|| *it == constrained_vertices.last())
{
color_fixed_points.push_back(0.0);
color_fixed_points.push_back(0.0);
color_fixed_points.push_back(1.0);
}
else
{
color_fixed_points.push_back(1.0);
color_fixed_points.push_back(0.0);
color_fixed_points.push_back(0.0);
}
}
}
item->getTriangleContainer(Temp_facets)->allocate(
Tc::Flat_vertices,
positions_temp_facets.data(),
static_cast<int>(positions_temp_facets.size()*sizeof(float)));
item->getTriangleContainer(Temp_facets)->allocate(
Tc::Flat_normals,
temp_normals.data(),
static_cast<int>(temp_normals.size()*sizeof(float)));
item->getEdgeContainer(Temp_edges)->allocate(
Ec::Vertices,
positions_temp_lines.data(),
static_cast<int>(positions_temp_lines.size()*sizeof(float)));
item->getPointContainer(Temp_points)->allocate(
Pc::Vertices,
positions_temp_points.data(),
static_cast<int>(positions_temp_points.size()*sizeof(float)));
item->getPointContainer(Fixed_points)->allocate(
Pc::Vertices,
positions_fixed_points.data(),
static_cast<int>(positions_fixed_points.size()*sizeof(float)));
item->getPointContainer(Fixed_points)->allocate(
Pc::Colors,
color_fixed_points.data(),
static_cast<int>(color_fixed_points.size()*sizeof(float)));
nb_temp_facets = positions_temp_facets.size();
nb_temp_lines = positions_temp_lines.size();
nb_temp_points = positions_temp_points.size();
nb_fixed_points = positions_fixed_points.size();
QApplication::restoreOverrideCursor();
}
void Scene_polyhedron_selection_item_priv::compute_HL_elements()const
{
QApplication::setOverrideCursor(Qt::WaitCursor);
compute_any_elements(positions_HL_facets, positions_HL_lines, positions_HL_points, HL_normals,
item->HL_selected_vertices, item->HL_selected_facets, item->HL_selected_edges);
item->getTriangleContainer(HL_facets)->allocate(
Tc::Flat_vertices,
positions_HL_facets.data(),
static_cast<int>(positions_HL_facets.size()*sizeof(float)));
item->getTriangleContainer(HL_facets)->allocate(
Tc::Flat_normals,
HL_normals.data(),
static_cast<int>(HL_normals.size()*sizeof(float)));
item->getEdgeContainer(HL_edges)->allocate(
Ec::Vertices,
positions_HL_lines.data(),
static_cast<int>(positions_HL_lines.size()*sizeof(float)));
item->getPointContainer(HL_points)->allocate(
Pc::Vertices,
positions_HL_points.data(),
static_cast<int>(positions_HL_points.size()*sizeof(float)));
QApplication::restoreOverrideCursor();
}
void Scene_polyhedron_selection_item::draw(CGAL::Three::Viewer_interface* viewer) const
{
GLfloat offset_factor;
GLfloat offset_units;
if(!isInit(viewer))
initGL(viewer);
if ( getBuffersFilled() &&
! getBuffersInit(viewer))
{
initializeBuffers(viewer);
setBuffersInit(viewer, true);
}
if(!getBuffersFilled())
{
computeElements();
initializeBuffers(viewer);
}
viewer->glGetFloatv(GL_POLYGON_OFFSET_FACTOR, &offset_factor);
viewer->glGetFloatv(GL_POLYGON_OFFSET_UNITS, &offset_units);
viewer->glPolygonOffset(0.9f, 0.9f);
getTriangleContainer(Priv::HL_facets)->setColor(QColor(255,153,51));
getTriangleContainer(Priv::HL_facets)->draw(viewer, true);
getTriangleContainer(Priv::Temp_facets)->setColor(QColor(0,255,0));
getTriangleContainer(Priv::Temp_facets)->draw(viewer, true);
getTriangleContainer(Priv::Facets)->setColor(this->color());
getTriangleContainer(Priv::Facets)->draw(viewer, true);
viewer->glEnable(GL_POLYGON_OFFSET_LINE);
viewer->glPolygonOffset(0.3f, 0.3f);
drawEdges(viewer);
viewer->glDisable(GL_POLYGON_OFFSET_LINE);
viewer->glPolygonOffset(offset_factor, offset_units);
drawPoints(viewer);
}
void Scene_polyhedron_selection_item::drawEdges(CGAL::Three::Viewer_interface* viewer) const
{
if(!isInit(viewer))
initGL(viewer);
if ( getBuffersFilled() &&
! getBuffersInit(viewer))
{
initializeBuffers(viewer);
setBuffersInit(viewer, true);
}
if(!getBuffersFilled())
{
computeElements();
initializeBuffers(viewer);
}
QVector2D vp(viewer->width(), viewer->height());
if(viewer->isOpenGL_4_3())
{
getEdgeContainer(Priv::HL_edges)->setViewport(vp);
getEdgeContainer(Priv::HL_edges)->setWidth(3.0f);
}
getEdgeContainer(Priv::HL_edges)->setColor(QColor(255,153,51));
getEdgeContainer(Priv::HL_edges)->draw(viewer, true);
if(viewer->isOpenGL_4_3())
{
getEdgeContainer(Priv::Temp_edges)->setViewport(vp);
getEdgeContainer(Priv::Temp_edges)->setWidth(3.0f);
}
getEdgeContainer(Priv::Temp_edges)->setColor(QColor(0,200,0));
getEdgeContainer(Priv::Temp_edges)->draw(viewer, true);
if(viewer->isOpenGL_4_3())
{
getEdgeContainer(Priv::Edges)->setViewport(vp);
getEdgeContainer(Priv::Edges)->setWidth(3.0f);
}
getEdgeContainer(Priv::Edges)->setColor(QColor(255,
color().blue()/2,
color().green()/2));
getEdgeContainer(Priv::Edges)->draw(viewer, true);
}
void Scene_polyhedron_selection_item::drawPoints(CGAL::Three::Viewer_interface* viewer) const
{
viewer->setGlPointSize(5.0f);
if(!d->are_HL_buffers_filled)
{
d->compute_HL_elements();
d->initialize_HL_buffers(viewer);
}
getPointContainer(Priv::HL_points)->setColor(QColor(255,153,51));
getPointContainer(Priv::HL_points)->draw(viewer, true);
getPointContainer(Priv::Temp_points)->setColor(QColor(0,50,0));
getPointContainer(Priv::Temp_points)->draw(viewer, true);
getPointContainer(Priv::Fixed_points)->draw(viewer, false);
getPointContainer(Priv::Points)->setColor(QColor(255,
(std::min)(color().blue()+color().red(), 255),
(std::min)(color().green()+color().red(), 255)));
getPointContainer(Priv::Points)->draw(viewer, true);
viewer->setGlPointSize(1.f);
}
void Scene_polyhedron_selection_item::inverse_selection()
{
switch(k_ring_selector.active_handle_type)
{
case Active_handle::VERTEX:
{
Selection_set_vertex temp_select = selected_vertices;
select_all();
Q_FOREACH(fg_vertex_descriptor vh, temp_select)
{
selected_vertices.erase(vh);
}
break;
}
case Active_handle::EDGE:
{
Selection_set_edge temp_select = selected_edges;
select_all();
Q_FOREACH(fg_edge_descriptor ed , temp_select)
selected_edges.erase(ed);
break;
}
default:
{
Selection_set_facet temp_select = selected_facets;
select_all();
Q_FOREACH(fg_face_descriptor fh, temp_select)
selected_facets.erase(fh);
break;
}
}
invalidateOpenGLBuffers();
}
void Scene_polyhedron_selection_item::set_num_faces(const std::size_t n)
{
d->set_num_faces(n);
}
void Scene_polyhedron_selection_item::set_highlighting(bool b)
{
setProperty("is_highlighting", b);
k_ring_selector.setHighLighting(b);
}
void Scene_polyhedron_selection_item::set_operation_mode(int mode)
{
k_ring_selector.setEditMode(true);
Q_EMIT updateInstructions(QString("SHIFT + left click to apply operation."));
switch(mode)
{
case -2:
set_active_handle_type(d->original_sel_mode);
Q_EMIT updateInstructions("Select two vertices to create the path between them. (1/2)");
break;
case -1:
//restore original selection_type
set_active_handle_type(d->original_sel_mode);
clearHL();
k_ring_selector.setEditMode(false);
break;
//Join vertex
case 0:
Q_EMIT updateInstructions("Select the edge with extremities you want to join.");
//set the selection type to Edge
set_active_handle_type(static_cast<Active_handle::Type>(2));
break;
//Split vertex
case 1:
Q_EMIT updateInstructions("Select the vertex you want to split. (1/3)");
//set the selection type to Vertex
set_active_handle_type(static_cast<Active_handle::Type>(0));
break;
//Split edge
case 2:
Q_EMIT updateInstructions("Select the edge you want to split.");
//set the selection type to Edge
set_active_handle_type(static_cast<Active_handle::Type>(2));
break;
//Join face
case 3:
Q_EMIT updateInstructions("Select the edge separating the faces you want to join."
"Warning: this operation will clear the undo stack.");
//set the selection type to Edge
set_active_handle_type(static_cast<Active_handle::Type>(2));
break;
//Split face
case 4:
Q_EMIT updateInstructions("Select the facet you want to split (degree >= 4). (1/3)");
//set the selection type to Facet
set_active_handle_type(static_cast<Active_handle::Type>(1));
break;
//Collapse edge
case 5:
Q_EMIT updateInstructions("Select the edge you want to collapse.");
//set the selection type to Edge
set_active_handle_type(static_cast<Active_handle::Type>(2));
break;
//Flip edge
case 6:
Q_EMIT updateInstructions("Select the edge you want to flip.");
//set the selection type to Edge
set_active_handle_type(static_cast<Active_handle::Type>(2));
break;
//Add center vertex
case 7:
Q_EMIT updateInstructions("Select a facet.");
//set the selection type to Facet
set_active_handle_type(static_cast<Active_handle::Type>(1));
break;
//Remove center vertex
case 8:
Q_EMIT updateInstructions("Select the vertex you want to remove."
"Warning: This will clear the undo stack.");
//set the selection type to vertex
set_active_handle_type(static_cast<Active_handle::Type>(0));
break;
//Add vertex and face to border
case 9:
Q_EMIT updateInstructions("Select a border edge. (1/2)");
//set the selection type to Edge
set_active_handle_type(static_cast<Active_handle::Type>(2));
break;
//Add face to border
case 10:
Q_EMIT updateInstructions("Select a border edge. (1/2)");
//set the selection type to Edge
set_active_handle_type(static_cast<Active_handle::Type>(2));
break;
case 11:
Q_EMIT updateInstructions("Select a vertex. (1/2)");
//set the selection type to Edge
set_active_handle_type(static_cast<Active_handle::Type>(0));
break;
default:
break;
}
d->operation_mode = mode;
}
template<typename HandleRange>
bool Scene_polyhedron_selection_item::treat_classic_selection(const HandleRange& selection)
{
typedef typename HandleRange::value_type HandleType;
Selection_traits<HandleType, Scene_polyhedron_selection_item> tr(this);
bool any_change = false;
if(is_insert) {
for(HandleType h : selection)
any_change |= tr.container().insert(h).second;
}
else{
for(HandleType h : selection)
any_change |= (tr.container().erase(h)!=0);
}
if(any_change) { invalidateOpenGLBuffers(); Q_EMIT itemChanged(); }
return any_change;
}
struct Index_updator{
const SMesh::Halfedge_index& old_;
SMesh::Halfedge_index& new_;
Index_updator(const SMesh::Halfedge_index& _old,
SMesh::Halfedge_index& _new)
:old_(_old), new_(_new){}
template<class V, class H, class F>
void operator()(const V&, const H& hmap, const F&)
{
new_ = hmap[old_];
}
};
bool Scene_polyhedron_selection_item::treat_selection(const std::set<fg_vertex_descriptor>& selection)
{
VPmap vpm = get(CGAL::vertex_point, *polyhedron());
if(!d->is_treated)
{
fg_vertex_descriptor vh = *selection.begin();
Selection_traits<fg_vertex_descriptor, Scene_polyhedron_selection_item> tr(this);
switch(d->operation_mode)
{
//classic selection
case -2:
case -1:
{
if(!d->is_path_selecting)
{
return treat_classic_selection(selection);
}
else
{
if(is_insert)
{
selectPath(*selection.begin());
invalidateOpenGLBuffers();
Q_EMIT itemChanged();
}
}
return false;
}
//Split vertex
case 1:
{
//save VH
d->to_split_vh = vh;
temp_selected_vertices.insert(d->to_split_vh);
//set to select facet
set_active_handle_type(static_cast<Active_handle::Type>(1));
invalidateOpenGLBuffers();
Q_EMIT updateInstructions("Select first facet. (2/3)");
break;
}
//Split face
case 4:
{
static fg_vertex_descriptor s;
static fg_halfedge_descriptor h1,h2;
static bool found_h1(false), found_h2(false);
if(!d->first_selected)
{
//Is the vertex on the face ?
for(fg_halfedge_descriptor hafc : halfedges_around_face(halfedge(d->to_split_fh,*polyhedron()), *polyhedron()))
{
if(target(hafc,*polyhedron())==vh)
{
h1 = hafc;
s = vh;
found_h1 = true;
break;
}
}
if(!found_h1)
{
d->tempInstructions("Vertex not selected : The vertex is not on the face.",
"Select the first vertex. (2/3)");
}
else
{
d->first_selected = true;
temp_selected_vertices.insert(s);
invalidateOpenGLBuffers();
Q_EMIT updateInstructions("Select the second vertex (3/3)");
}
}
else
{
bool is_same(false), are_next(false);
for(int i=0; i<1; i++) //seems useless but allow the use of break.
{
//Is the vertex on the face ?
for(fg_halfedge_descriptor hafc : halfedges_around_face(halfedge(d->to_split_fh,*polyhedron()), *polyhedron()))
if(target(hafc,*polyhedron())==vh)
{
h2 = hafc;
found_h2 = true;
break;
}
if(!found_h2)
{
break;
}
//Are they different ?
if(h1 == h2)
{
is_same = true;
break;
}
is_same = false;
//Are they directly following each other?
if(next(h1, *polyhedron()) == h2 ||
next(h2, *polyhedron()) == h1)
{
are_next = true;
break;
}
are_next = false;
}
if(!found_h2)
d->tempInstructions("Vertex not selected : The vertex is not on the face.",
"Select the second vertex (3/3).");
else if(is_same)
d->tempInstructions("Vertex not selected : The vertices must be different.",
"Select the second vertex (3/3).");
else if(are_next)
d->tempInstructions("Vertex not selected : The vertices must not directly follow each other.",
"Select the second vertex (3/3).");
else
{
SMesh* mesh = polyhedron();
fg_halfedge_descriptor h;
h = CGAL::Euler::split_face(h1,h2, *mesh);
d->stack.push(new EulerOperation(//the stack takes ownership of the cmd, so no worries
[h, mesh](){
CGAL::Euler::join_face(h,*mesh);
}, this));
d->first_selected = false;
temp_selected_vertices.clear();
temp_selected_facets.clear();
compute_normal_maps();
invalidateOpenGLBuffers();
//reset selection type to Facet
set_active_handle_type(static_cast<Active_handle::Type>(1));
d->tempInstructions("Face split.",
"Select a facet (1/3).");
polyhedron_item()->resetColors();
polyhedron_item()->invalidateOpenGLBuffers();
}
}
break;
}
//Remove center vertex
case 8:
{
bool has_hole = false;
for(fg_halfedge_descriptor hc : halfedges_around_target(vh,*polyhedron()))
{
if(is_border(hc,*polyhedron()))
{
has_hole = true;
break;
}
}
if(!has_hole)
{
SMesh* mesh = polyhedron();
halfedge_descriptor hd = halfedge(vh,*mesh);
Point_3 p = get(vpm, target(hd, *mesh));
halfedge_descriptor hhandle = CGAL::Euler::remove_center_vertex(hd,*mesh);
halfedge_descriptor new_h;
Index_updator iu(hhandle, new_h);
mesh->collect_garbage(iu);
d->stack.clear();
d->stack.push(new EulerOperation(
[new_h, p, mesh, vpm](){
halfedge_descriptor h = CGAL::Euler::add_center_vertex(
new_h, *mesh);
put(vpm, target(h,*mesh), p);
}, this));
compute_normal_maps();
polyhedron_item()->invalidateOpenGLBuffers();
}
else
{
d->tempInstructions("Vertex not selected : There must be no hole incident to the selection.",
"Select the vertex you want to remove."
"Warning: This will clear the undo stack.");
}
break;
}
case 11:
CGAL::QGLViewer* viewer = Three::mainViewer();
const CGAL::qglviewer::Vec offset = viewer->offset();
if(viewer->manipulatedFrame() != d->manipulated_frame)
{
temp_selected_vertices.insert(vh);
k_ring_selector.setEditMode(false);
const Point_3& p = get(vpm,vh);
d->manipulated_frame->setPosition(p.x()+offset.x, p.y()+offset.y, p.z()+offset.z);
viewer->setManipulatedFrame(d->manipulated_frame);
connect(d->manipulated_frame, SIGNAL(modified()), this, SLOT(updateTick()));
if(property("is_highlighting").toBool())
{
setProperty("need_hl_restore", true);
set_highlighting(false);
}
if(property("need_invalidate_aabb_tree").toBool()){
polyhedron_item()->invalidate_aabb_tree();
setProperty("need_invalidate_aabb_tree", false);
}
invalidateOpenGLBuffers();
Q_EMIT updateInstructions("Ctrl+Right-click to move the point. \nHit Ctrl+Z to leave the selection. (2/2)");
}
else
{
temp_selected_vertices.clear();
temp_selected_vertices.insert(vh);
const Point_3& p = get(vpm,vh);
d->manipulated_frame->setPosition(p.x()+offset.x, p.y()+offset.y, p.z()+offset.z);
if(property("is_highlighting").toBool())
{
setProperty("need_hl_restore", true);
set_highlighting(false);
}
invalidateOpenGLBuffers();
}
break;
}
}
d->is_treated = true;
//Keeps the item from trying to draw primitive that has just been deleted.
clearHL();
return false;
}
//returns true if halfedge's facet's degree >= degree
/*
std::size_t facet_degree(fg_halfedge_descriptor h, const Face_graph& polyhedron)
{
return degree(h,polyhedron);
}
*/
bool Scene_polyhedron_selection_item:: treat_selection(const std::set<fg_edge_descriptor>& selection)
{
VPmap vpm = get(CGAL::vertex_point, *polyhedron());
fg_edge_descriptor ed = *selection.begin();
if(!d->is_treated)
{
Selection_traits<fg_edge_descriptor, Scene_polyhedron_selection_item> tr(this);
switch(d->operation_mode)
{
//classic selection
case -1:
{
return treat_classic_selection(selection);
}
//Join vertex
case 0:
if(boost::distance(CGAL::halfedges_around_face(halfedge(ed, *polyhedron()), *polyhedron())) < 4
||
boost::distance(CGAL::halfedges_around_face(opposite(halfedge(ed, *polyhedron()),*polyhedron()),*polyhedron()))< 4)
{
d->tempInstructions("Edge not selected: the incident facets must have a degree of at least 4.",
"Select the edge with extremities you want to join.");
}
else
{
fg_halfedge_descriptor targt = halfedge(ed, *polyhedron());
Point S,T;
S = get(vpm, source(targt, *polyhedron()));
T = get(vpm, target(targt, *polyhedron()));
put(vpm, target(CGAL::Euler::join_vertex(targt,*polyhedron()),*polyhedron()), Point(0.5*(S.x()+T.x()), 0.5*(S.y()+T.y()), 0.5*(S.z()+T.z())));
d->tempInstructions("Vertices joined.",
"Select the edge with extremities you want to join.");
compute_normal_maps();
invalidateOpenGLBuffers();
polyhedron_item()->invalidateOpenGLBuffers();
}
break;
//Split edge
case 2:
{
SMesh* mesh = polyhedron();
Point_3 a(get(vpm,target(halfedge(ed, *mesh),*mesh))),
b(get(vpm,target(opposite(halfedge(ed, *mesh),*mesh),*mesh)));
fg_halfedge_descriptor hhandle = CGAL::Euler::split_edge(halfedge(ed, *mesh),*mesh);
d->stack.push(new EulerOperation(
[hhandle, mesh, vpm](){
Point_3 p(get(vpm,source(hhandle,*mesh)));
halfedge_descriptor h = CGAL::Euler::join_vertex(hhandle, *mesh);
put(vpm, target(h,*mesh), p);
}, this));
Point_3 p((b.x()+a.x())/2.0, (b.y()+a.y())/2.0,(b.z()+a.z())/2.0);
put(vpm, target(hhandle,*mesh), p);
invalidateOpenGLBuffers();
poly_item->invalidateOpenGLBuffers();
compute_normal_maps();
d->tempInstructions("Edge split.",
"Select the edge you want to split.");
break;
}
//Join face
case 3:
if(out_degree(source(halfedge(ed,*polyhedron()),*polyhedron()),*polyhedron())<3 ||
out_degree(target(halfedge(ed,*polyhedron()),*polyhedron()),*polyhedron())<3)
d->tempInstructions("Faces not joined : the two endpoints of the edge must have a degree of at least 3.",
"Select the edge separating the faces you want to join."
"Warning: this operation will clear the undo stack.");
else
{
SMesh* mesh = polyhedron();
vertex_descriptor v1(source(ed, *mesh)),
v2(target(ed, *mesh));
d->stack.clear();
d->stack.push(new EulerOperation(
[v1,v2,mesh](){
CGAL::Euler::split_face(
halfedge(v1, *mesh),
halfedge(v2, *mesh),
*mesh);
}, this));
CGAL::Euler::join_face(halfedge(ed, *mesh), *mesh);
compute_normal_maps();
poly_item->invalidateOpenGLBuffers();
}
break;
//Collapse edge
case 5:
if(!is_triangle_mesh(*polyhedron()))
{
d->tempInstructions("Edge not collapsed : the graph must be triangulated.",
"Select the edge you want to collapse.");
}
else if(!CGAL::Euler::does_satisfy_link_condition(ed, *polyhedron()))
{
d->tempInstructions("Edge not collapsed : link condition not satisfied.",
"Select the edge you want to collapse.");
}
else
{
fg_halfedge_descriptor targt = halfedge(ed, *polyhedron());
Point S,T;
S = get(vpm, source(targt, *polyhedron()));
T = get(vpm, target(targt, *polyhedron()));
put(vpm, CGAL::Euler::collapse_edge(ed, *polyhedron()), Point(0.5*(S.x()+T.x()), 0.5*(S.y()+T.y()), 0.5*(S.z()+T.z())));
compute_normal_maps();
polyhedron_item()->invalidateOpenGLBuffers();
d->tempInstructions("Edge collapsed.",
"Select the edge you want to collapse.");
}
break;
//Flip edge
case 6:
//check preconditions
if(boost::distance(CGAL::halfedges_around_face(halfedge(ed, *polyhedron()),*polyhedron())) == 3
&&
boost::distance(CGAL::halfedges_around_face(opposite(halfedge(ed, *polyhedron()),*polyhedron()),*polyhedron())) == 3
&& !CGAL::is_border(ed, *polyhedron()))
{
SMesh* mesh = polyhedron();
halfedge_descriptor h = halfedge(ed, *mesh);
CGAL::Euler::flip_edge(h, *mesh);
d->stack.push(new EulerOperation(
[h, mesh](){
CGAL::Euler::flip_edge(h, *mesh);
}, this));
polyhedron_item()->invalidateOpenGLBuffers();
compute_normal_maps();
}
else
{
d->tempInstructions("Edge not selected : incident facets must be triangles.",
"Select the edge you want to flip.");
}
break;
//Add vertex and face to border
case 9:
{
static fg_halfedge_descriptor t;
if(!d->first_selected)
{
bool found = false;
fg_halfedge_descriptor hc = halfedge(ed, *polyhedron());
if(is_border(hc,*polyhedron()))
{
t = hc;
found = true;
}
else if(is_border(opposite(hc,*polyhedron()),*polyhedron()))
{
t = opposite(hc,*polyhedron());
found = true;
}
if(found)
{
d->first_selected = true;
temp_selected_edges.insert(edge(t, *polyhedron()));
temp_selected_vertices.insert(target(t,*polyhedron()));
invalidateOpenGLBuffers();
Q_EMIT updateInstructions("Select second edge. (2/2)");
}
else
{
d->tempInstructions("Edge not selected : no border found.",
"Select a border edge. (1/2)");
}
}
else
{
fg_halfedge_descriptor hc = halfedge(ed, *polyhedron());
if(d->canAddFaceAndVertex(hc, t))
{
d->first_selected = false;
temp_selected_edges.clear();
temp_selected_vertices.clear();
compute_normal_maps();
polyhedron_item()->resetColors();
invalidateOpenGLBuffers();
polyhedron_item()->invalidateOpenGLBuffers();
d->tempInstructions("Face and vertex added.",
"Select a border edge. (1/2)");
}
}
break;
}
//Add face to border
case 10:
{
static fg_halfedge_descriptor t;
if(!d->first_selected)
{
bool found = false;
fg_halfedge_descriptor hc = halfedge(ed, *polyhedron());
if(is_border(hc,*polyhedron()))
{
t = hc;
found = true;
}
else if(is_border(opposite(hc,*polyhedron()),*polyhedron()))
{
t = opposite(hc,*polyhedron());
found = true;
}
if(found)
{
d->first_selected = true;
temp_selected_edges.insert(edge(t, *polyhedron()));
temp_selected_vertices.insert(target(t,*polyhedron()));
invalidateOpenGLBuffers();
Q_EMIT updateInstructions("Select second edge. (2/2)");
set_active_handle_type(static_cast<Active_handle::Type>(2));
}
else
{
d->tempInstructions("Edge not selected : no border found.",
"Select a border edge. (1/2)");
}
}
else
{
fg_halfedge_descriptor hc = halfedge(ed, *polyhedron());
if(d->canAddFace(hc, t))
{
d->first_selected = false;
temp_selected_vertices.clear();
temp_selected_edges.clear();
compute_normal_maps();
polyhedron_item()->resetColors();
invalidateOpenGLBuffers();
polyhedron_item()->invalidateOpenGLBuffers();
d->tempInstructions("Face added.",
"Select a border edge. (1/2)");
}
}
break;
}
}
}
d->is_treated = true;
//Keeps the item from trying to draw primitive that has just been deleted.
clearHL();
return false;
}
bool Scene_polyhedron_selection_item::treat_selection(const std::vector<fg_face_descriptor>& selection)
{
return treat_classic_selection(selection);
}
bool Scene_polyhedron_selection_item::treat_selection(const std::set<fg_face_descriptor>& selection)
{
VPmap vpm = get(CGAL::vertex_point,*polyhedron());
if(!d->is_treated)
{
fg_face_descriptor fh = *selection.begin();
Selection_traits<fg_face_descriptor, Scene_polyhedron_selection_item> tr(this);
switch(d->operation_mode)
{
//classic selection
case -1:
{
return treat_classic_selection(selection);
}
//Split vertex
case 1:
{
static fg_halfedge_descriptor h1;
//stores first fh and emit change label
if(!d->first_selected)
{
bool found = false;
//test preco
for(fg_halfedge_descriptor hafc : halfedges_around_face(halfedge(fh,*polyhedron()),*polyhedron()))
{
if(target(hafc,*polyhedron())==d->to_split_vh)
{
h1 = hafc;
found = true;
break;
}
}
if(found)
{
d->first_selected = true;
temp_selected_facets.insert(fh);
invalidateOpenGLBuffers();
Q_EMIT updateInstructions("Select the second facet. (3/3)");
}
else
d->tempInstructions("Facet not selected : no valid halfedge",
"Select first facet. (2/3)");
}
//call the function with point and facets.
else
{
//get the right halfedges
fg_halfedge_descriptor h2;
bool found = false;
for(fg_halfedge_descriptor hafc : halfedges_around_face(halfedge(fh,*polyhedron()),*polyhedron()))
{
if(target(hafc,*polyhedron())==d->to_split_vh)
{
h2 = hafc;
found = true;
break;
}
}
if(found &&(h1 != h2))
{
SMesh* mesh = polyhedron();
Point p = get(vpm, target(h1, *mesh));
fg_halfedge_descriptor hhandle = CGAL::Euler::split_vertex(h1,h2,*mesh);
d->stack.push(new EulerOperation(
[hhandle, mesh, vpm, p](){
halfedge_descriptor h = CGAL::Euler::join_vertex(hhandle, *mesh);
put(vpm, target(h,*mesh), p);
}, this));
temp_selected_facets.clear();
Point_3 p1t = get(vpm, target(h1,*mesh));
Point_3 p1s = get(vpm, target(opposite(h1,*mesh),*mesh));
double x = p1t.x() + 0.01 * (p1s.x() - p1t.x());
double y = p1t.y() + 0.01 * (p1s.y() - p1t.y());
double z = p1t.z() + 0.01 * (p1s.z() - p1t.z());
put(vpm, target(opposite(hhandle,*mesh),*mesh), Point_3(x,y,z));;
d->first_selected = false;
temp_selected_vertices.clear();
compute_normal_maps();
invalidateOpenGLBuffers();
//reset selection mode
set_active_handle_type(static_cast<Active_handle::Type>(0));
poly_item->resetColors();
poly_item->invalidateOpenGLBuffers();
d->tempInstructions("Vertex split.", "Select the vertex you want to split. (1/3)");
}
else if(h1 == h2)
{
d->tempInstructions("Facet not selected : same as the first.", "Select the second facet. (3/3)");
}
else
{
d->tempInstructions("Facet not selected : no valid halfedge.", "Select the second facet. (3/3)");
}
}
break;
}
//Split face
case 4:
if(is_triangle(halfedge(fh,*d->poly), *d->poly))
{
d->tempInstructions("Facet not selected : Facet must not be a triangle.",
"Select the facet you want to split (degree >= 4). (1/3)");
}
else
{
d->to_split_fh = fh;
temp_selected_facets.insert(d->to_split_fh);
compute_normal_maps();
invalidateOpenGLBuffers();
//set to select vertex
set_active_handle_type(static_cast<Active_handle::Type>(0));
Q_EMIT updateInstructions("Select first vertex. (2/3)");
}
break;
//Add center vertex
case 7:
if(is_border(halfedge(fh,*polyhedron()),*polyhedron()))
{
d->tempInstructions("Facet not selected : Facet must not be null.",
"Select a Facet. (1/3)");
}
else
{
SMesh* mesh = polyhedron();
double x(0), y(0), z(0);
int total(0);
for(fg_halfedge_descriptor hafc : halfedges_around_face(halfedge(fh,*mesh),*mesh))
{
fg_vertex_descriptor vd = target(hafc,*mesh);
Point_3& p = get(vpm,vd);
x+= p.x(); y+=p.y(); z+=p.z();
total++;
}
fg_halfedge_descriptor hhandle = CGAL::Euler::add_center_vertex(halfedge(fh,*mesh), *mesh);
d->stack.push(new EulerOperation(
[hhandle, mesh](){
CGAL::Euler::remove_center_vertex(hhandle, *mesh);
}, this));
if(total !=0)
put(vpm, target(hhandle,*mesh), Point_3(x/(double)total, y/(double)total, z/(double)total));
compute_normal_maps();
polyhedron_item()->resetColors();
poly_item->invalidateOpenGLBuffers();
}
break;
}
}
d->is_treated = true;
//Keeps the item from trying to draw primitive that has just been deleted.
clearHL();
return false;
}
void Scene_polyhedron_selection_item_priv::tempInstructions(QString s1, QString s2)
{
m_temp_instructs = s2;
Q_EMIT item->updateInstructions(QString("<font color='red'>%1</font>").arg(s1));
QTimer timer;
timer.singleShot(5500, item, SLOT(emitTempInstruct()));
}
void Scene_polyhedron_selection_item::emitTempInstruct()
{
Q_EMIT updateInstructions(QString("<font color='black'>%1</font>").arg(d->m_temp_instructs));
}
/// An exception used while catching a throw that stops Dijkstra's algorithm
/// once the shortest path to a target has been found.
class Dijkstra_end_exception : public std::exception
{
const char* what() const throw ()
{
return "Dijkstra shortest path: reached the target vertex.";
}
};
/// Visitor to stop Dijkstra's algorithm once the given target turns 'BLACK',
/// that is when the target has been examined through all its incident edges and
/// the shortest path is thus known.
class Stop_at_target_Dijkstra_visitor : boost::default_dijkstra_visitor
{
fg_vertex_descriptor destination_vd;
public:
Stop_at_target_Dijkstra_visitor(fg_vertex_descriptor destination_vd)
: destination_vd(destination_vd)
{ }
void initialize_vertex(const fg_vertex_descriptor& /*s*/, const Face_graph& /*mesh*/) const { }
void examine_vertex(const fg_vertex_descriptor& /*s*/, const Face_graph& /*mesh*/) const { }
void examine_edge(const fg_edge_descriptor& /*e*/, const Face_graph& /*mesh*/) const { }
void edge_relaxed(const fg_edge_descriptor& /*e*/, const Face_graph& /*mesh*/) const { }
void discover_vertex(const fg_vertex_descriptor& /*s*/, const Face_graph& /*mesh*/) const { }
void edge_not_relaxed(const fg_edge_descriptor& /*e*/, const Face_graph& /*mesh*/) const { }
void finish_vertex(const fg_vertex_descriptor &vd, const Face_graph& /* mesh*/) const
{
if(vd == destination_vd)
throw Dijkstra_end_exception();
}
};
void Scene_polyhedron_selection_item_priv::computeAndDisplayPath()
{
item->temp_selected_edges.clear();
path.clear();
typedef std::unordered_map<fg_vertex_descriptor, fg_vertex_descriptor> Pred_umap;
typedef boost::associative_property_map<Pred_umap> Pred_pmap;
Pred_umap predecessor;
Pred_pmap pred_pmap(predecessor);
vertex_on_path vop;
QList<fg_vertex_descriptor>::iterator it;
for(it = constrained_vertices.begin(); it!=constrained_vertices.end()-1; ++it)
{
fg_vertex_descriptor t(*it), s(*(it+1));
Stop_at_target_Dijkstra_visitor vis(t);
try
{
boost::dijkstra_shortest_paths(*item->polyhedron(), s,
boost::predecessor_map(pred_pmap).visitor(vis));
}
catch (const std::exception& e)
{
std::cout << e.what() << std::endl;
}
// Walk back from target to source and collect vertices along the way
do
{
vop.vertex = t;
if(constrained_vertices.contains(t))
{
vop.is_constrained = true;
}
else
vop.is_constrained = false;
path.append(vop);
t = get(pred_pmap, t);
}
while(t != s);
}
// Add the last vertex
vop.vertex = constrained_vertices.last();
vop.is_constrained = true;
path.append(vop);
// Display path
double path_length = 0;
QList<vertex_on_path>::iterator path_it;
for(path_it = path.begin(); path_it!=path.end()-1; ++path_it)
{
std::pair<fg_halfedge_descriptor, bool> h = halfedge((path_it+1)->vertex,path_it->vertex,*item->polyhedron());
if(h.second)
{
VPmap vpm = get(CGAL::vertex_point,*polyhedron());
Point p1(get(vpm, (path_it+1)->vertex)), p2(get(vpm, path_it->vertex));
path_length += CGAL::sqrt(Vector(p1,p2).squared_length());
item->temp_selected_edges.insert(edge(h.first, *item->polyhedron()));
}
}
item->printMessage(QString("New path length: %1").arg(path_length));
}
void Scene_polyhedron_selection_item_priv::addVertexToPath(fg_vertex_descriptor vh, vertex_on_path &first)
{
vertex_on_path source;
source.vertex = vh;
source.is_constrained = true;
path.append(source);
first = source;
}
void Scene_polyhedron_selection_item::selectPath(fg_vertex_descriptor vh)
{
bool replace = !temp_selected_edges.empty();
static Scene_polyhedron_selection_item_priv::vertex_on_path first;
if(!d->first_selected)
{
//if the path doesn't exist, add the vertex as the source of the path.
if(!replace)
{
d->addVertexToPath(vh, first);
}
//if the path exists, get the vertex_on_path corresponding to the selected vertex.
else
{
//The first vertex of the path can not be moved, but you can close your path on it to make a loop.
bool alone = true;
QList<Scene_polyhedron_selection_item_priv::vertex_on_path>::iterator it;
for(it = d->path.begin(); it!=d->path.end(); ++it)
{
if(it->vertex == vh&& it!=d->path.begin())
alone = false;
}
if(d->path.begin()->vertex == vh )
if(alone)
{
d->constrained_vertices.append(vh); //if the path loops, the indexOf may be invalid, hence the check.
//Display the new path
d->computeAndDisplayPath();
d->first_selected = false;
d->constrained_vertices.clear();
fixed_vertices.clear();
for(it = d->path.begin(); it!=d->path.end(); ++it)
{
if(it->is_constrained )
{
d->constrained_vertices.append(it->vertex);
fixed_vertices.insert(it->vertex);
}
}
return;
}
bool found = false;
Q_FOREACH(Scene_polyhedron_selection_item_priv::vertex_on_path vop, d->path)
{
if(vop.vertex == vh)
{
first = vop;
found = true;
break;
}
}
if(!found)//add new end_point;
{
d->constrained_vertices.append(vh);
//Display the new path
d->computeAndDisplayPath();
d->first_selected = false;
d->constrained_vertices.clear();
fixed_vertices.clear();
for(it = d->path.begin(); it!=d->path.end(); ++it)
{
if(it->is_constrained )
{
d->constrained_vertices.append(it->vertex);
fixed_vertices.insert(it->vertex);
}
}
return;
}
}
temp_selected_vertices.insert(vh);
d->first_selected = true;
}
else
{
if(!replace)
{
d->constrained_vertices.append(vh);
temp_selected_vertices.erase(first.vertex);
updateInstructions("You can select a vertex on the green path to move it. "
"If you do so, it will become a red fixed point. "
"The path will be recomputed to go through that point. "
"Click on 'Add to selection' to validate the selection. (2/2)");
}
else
{
bool is_same(false), alone(true);
if( (vh == d->constrained_vertices.first() && first.vertex == d->constrained_vertices.last())
|| (vh == d->constrained_vertices.last() && first.vertex == d->constrained_vertices.first()))
{
is_same = true;
}
if(first.vertex == d->path.begin()->vertex)
alone =false;
bool is_last = true;
//find the previous constrained vertex on path
Scene_polyhedron_selection_item_priv::vertex_on_path closest = d->path.last();
QList<Scene_polyhedron_selection_item_priv::vertex_on_path>::iterator it;
int index = 0;
int closest_index = 0;
//get first's index
for(it = d->path.begin(); it!=d->path.end(); ++it)
{
bool end_of_path_is_prio = true;//makes the end of the path priority over the other points when there is a conflict
if(first.vertex == (d->path.end()-1)->vertex)
if(it != d->path.end()-1)
end_of_path_is_prio = false;
//makes the end of the path priority over the other points when there is a conflict
if(it->vertex == first.vertex &&
!(it == d->path.begin())&&// makes the beginning of the path impossible to move
end_of_path_is_prio)
{
if(it!=d->path.end()-1 &&! is_same )
{
d->constrained_vertices.removeAll(it->vertex);
if(!alone)
d->constrained_vertices.prepend(it->vertex);
}
d->path.erase(it);
break;
}
if(it->is_constrained)
closest_index++;
index++;
}
//get first constrained vertex following first in path
for(it = d->path.begin() + index; it!=d->path.end(); ++it)
{
if(it->is_constrained )
{
is_last = false;
closest = *it;
break;
}
}
//mark the new vertex as constrained before closest.
temp_selected_vertices.erase(first.vertex);
//check if the vertex is contained several times in the path
if(!is_last)
{
d->constrained_vertices.insert(closest_index, vh);//cannot really use indexOf in case a fixed_point is used several times
}
else
d->constrained_vertices.replace(d->constrained_vertices.size()-1, vh);
}
//Display the new path
d->computeAndDisplayPath();
d->first_selected = false;
}
//update constrained_vertices
d->constrained_vertices.clear();
fixed_vertices.clear();
QList<Scene_polyhedron_selection_item_priv::vertex_on_path>::iterator it;
for(it = d->path.begin(); it!=d->path.end(); ++it)
{
if(it->is_constrained )
{
d->constrained_vertices.append(it->vertex);
fixed_vertices.insert(it->vertex);
}
}
}
void Scene_polyhedron_selection_item::on_Ctrlz_pressed()
{
d->path.clear();
d->constrained_vertices.clear();
fixed_vertices.clear();
validateMoveVertex();
d->first_selected = false;
temp_selected_vertices.clear();
temp_selected_edges.clear();
temp_selected_facets.clear();
d->are_temp_buffers_filled = false;
set_operation_mode(d->operation_mode);
Q_EMIT itemChanged();
}
void Scene_polyhedron_selection_item::on_Ctrlu_pressed()
{
if(d->stack.canUndo())
d->stack.undo();
}
void Scene_polyhedron_selection_item::common_constructor()
{
d = new Scene_polyhedron_selection_item_priv(this);
d->original_sel_mode = static_cast<Active_handle::Type>(0);
d->operation_mode = -1;
d->nb_facets = 0;
d->nb_points = 0;
d->nb_lines = 0;
this->setColor(QColor(87,87,87));
d->first_selected = false;
d->is_treated = false;
d->poly_need_update = false;
d->are_temp_buffers_filled = false;
d->poly = nullptr;
d->ready_to_move = false;
do_process = true;
setProperty("no_picking", true);
setPointContainer(3,
new Pc(Vi::PROGRAM_NO_SELECTION, false));
for(int i=2; i>=0; --i)
{
setTriangleContainer(i,
new Tc(Vi::PROGRAM_WITH_LIGHT, false));
setEdgeContainer(i,
new Ec(Three::mainViewer()->isOpenGL_4_3()
? Vi::PROGRAM_SOLID_WIREFRAME
: Vi::PROGRAM_NO_SELECTION,
false));
setPointContainer(i,
new Pc(Vi::PROGRAM_NO_SELECTION, false));
}
}
Scene_polyhedron_selection_item::Scene_polyhedron_selection_item()
: Scene_polyhedron_item_decorator(nullptr, false)
{
common_constructor();
}
Scene_polyhedron_selection_item::Scene_polyhedron_selection_item(Scene_face_graph_item* poly_item, QMainWindow* mw)
: Scene_polyhedron_item_decorator(nullptr, false)
{
common_constructor();
QString sf = poly_item->property("source filename").toString();
QRegExp rx("\\.(ts$|off$|obj$|ply$|stl$|surf$|vtk$|vtp$|vtu)");
sf.remove(rx);
if(!sf.isEmpty())
setProperty("defaultSaveDir", sf);
init(poly_item, mw);
invalidateOpenGLBuffers();
compute_normal_maps();
}
Scene_polyhedron_selection_item::~Scene_polyhedron_selection_item()
{
delete d;
Q_FOREACH(CGAL::QGLViewer* v, CGAL::QGLViewer::QGLViewerPool()){
CGAL::Three::Viewer_interface* viewer = dynamic_cast<CGAL::Three::Viewer_interface*>(v);
viewer->setBindingSelect();
}
}
void Scene_polyhedron_selection_item::setPathSelection(bool b) {
k_ring_selector.setEditMode(b);
d->is_path_selecting = b;
if(d->is_path_selecting){
int ind = 0;
boost::property_map<Face_graph,CGAL::vertex_selection_t>::type vsm =
get(CGAL::vertex_selection,*polyhedron());
for(fg_vertex_descriptor vd : vertices(*polyhedron())){
put(vsm,vd, ind++);
}
}
}
void Scene_polyhedron_selection_item::update_poly()
{
if(d->poly_need_update)
poly_item->invalidateOpenGLBuffers();
}
void Scene_polyhedron_selection_item::resetIsTreated() { d->is_treated = false;}
void Scene_polyhedron_selection_item::invalidateOpenGLBuffers() {
// do not use decorator function, which calls changed on poly_item which cause deletion of AABB
// poly_item->invalidateOpenGLBuffers();
are_buffers_filled = false;
d->are_temp_buffers_filled = false;
setBuffersFilled(false);
getTriangleContainer(Priv::Facets)->reset_vbos(ALL);
getTriangleContainer(Priv::Temp_facets)->reset_vbos(ALL);
getEdgeContainer(Priv::Edges)->reset_vbos(ALL);
getEdgeContainer(Priv::Temp_edges)->reset_vbos(ALL);
getPointContainer(Priv::Points)->reset_vbos(ALL);
getPointContainer(Priv::Temp_points)->reset_vbos(ALL);
getPointContainer(Priv::Fixed_points)->reset_vbos(ALL);
Q_FOREACH(CGAL::QGLViewer* v, CGAL::QGLViewer::QGLViewerPool())
{
CGAL::Three::Viewer_interface* viewer =
static_cast<CGAL::Three::Viewer_interface*>(v);
if(viewer == nullptr)
continue;
setBuffersInit(viewer, false);
viewer->update();
}
d->poly = polyhedron();
compute_bbox();
if(d->filtered_graph)
{
delete d->filtered_graph;
d->filtered_graph = nullptr;
}
}
void Scene_polyhedron_selection_item::add_to_selection()
{
Q_FOREACH(fg_edge_descriptor ed, temp_selected_edges)
{
selected_edges.insert(ed);
temp_selected_edges.erase(ed);
}
on_Ctrlz_pressed();
invalidateOpenGLBuffers();
Q_FOREACH(CGAL::QGLViewer* v, CGAL::QGLViewer::QGLViewerPool())
v->update();
d->tempInstructions("Path added to selection.",
"Select two vertices to create the path between them. (1/2)");
}
void Scene_polyhedron_selection_item::save_handleType()
{
d->original_sel_mode = get_active_handle_type();
}
void Scene_polyhedron_selection_item::compute_normal_maps()
{
d->face_normals_map.clear();
d->vertex_normals_map.clear();
d->nf_pmap = boost::associative_property_map< CGAL::Unique_hash_map<fg_face_descriptor, EPICK::Vector_3> >(d->face_normals_map);
d->nv_pmap = boost::associative_property_map< CGAL::Unique_hash_map<fg_vertex_descriptor, EPICK::Vector_3> >(d->vertex_normals_map);
PMP::compute_normals(*d->poly, d->nv_pmap, d->nf_pmap);
}
void Scene_polyhedron_selection_item::updateTick()
{
d->ready_to_move = true;
QTimer::singleShot(0,this,SLOT(moveVertex()));
}
void Scene_polyhedron_selection_item::moveVertex()
{
if(d->ready_to_move)
{
const CGAL::qglviewer::Vec offset = Three::mainViewer()->offset();
fg_vertex_descriptor vh = *temp_selected_vertices.begin();
VPmap vpm = get(CGAL::vertex_point,*polyhedron());
put(vpm, vh, Point_3(d->manipulated_frame->position().x-offset.x,
d->manipulated_frame->position().y-offset.y,
d->manipulated_frame->position().z-offset.z));
setProperty("need_invalidate_aabb_tree", true);
invalidateOpenGLBuffers();
poly_item->updateVertex(vh);
// poly_item->invalidateOpenGLBuffers();
d->ready_to_move = false;
}
}
void Scene_polyhedron_selection_item::validateMoveVertex()
{
temp_selected_vertices.clear();
CGAL::QGLViewer* viewer = Three::mainViewer();
k_ring_selector.setEditMode(true);
viewer->setManipulatedFrame(nullptr);
invalidateOpenGLBuffers();
poly_item->itemChanged();
if(property("need_hl_restore").toBool()){
set_highlighting(true);
setProperty("need_hl_restore", false);
}
if(property("need_invalidate_aabb_tree").toBool()){
polyhedron_item()->invalidate_aabb_tree();
setProperty("need_invalidate_aabb_tree", false);
}
Q_EMIT updateInstructions("Select a vertex. (1/2)");
}
bool Scene_polyhedron_selection_item_priv::canAddFace(fg_halfedge_descriptor hc, fg_halfedge_descriptor t)
{
bool found(false), is_border_h(false);
//if the selected halfedge is not a border, stop and signal it.
if(is_border(hc,*polyhedron()))
is_border_h = true;
else if(is_border(opposite(hc,*polyhedron()),*polyhedron()))
{
hc = opposite(hc,*polyhedron());
is_border_h = true;
}
if(!is_border_h)
{
tempInstructions("Edge not selected : no shared border found.",
"Select the second edge. (2/2)");
return false;
}
//if the halfedges are the same, stop and signal it.
if(hc == t)
{
tempInstructions("Edge not selected : halfedges must be different.",
"Select the second edge. (2/2)");
return false;
}
//if the halfedges are adjacent, stop and signal it.
if(next(t, *item->polyhedron()) == hc || next(hc, *item->polyhedron()) == t)
{
tempInstructions("Edge not selected : halfedges must not be adjacent.",
"Select the second edge. (2/2)");
return false;
}
//if the halfedges are not on the same border, stop and signal it.
fg_halfedge_descriptor iterator = next(t, *item->polyhedron());
while(iterator != t)
{
if(iterator == hc)
{
found = true;
fg_halfedge_descriptor res =
CGAL::Euler::add_face_to_border(t,hc, *item->polyhedron());
fg_face_descriptor resf = face(res, *item->polyhedron());
if(CGAL::Polygon_mesh_processing::is_degenerate_triangle_face(resf, *item->polyhedron()))
{
CGAL::Euler::remove_face(res, *item->polyhedron());
tempInstructions("Edge not selected : resulting facet is degenerated.",
"Select the second edge. (2/2)");
return false;
}
break;
}
iterator = next(iterator, *item->polyhedron());
}
if(!found)
{
tempInstructions("Edge not selected : no shared border found.",
"Select the second edge. (2/2)");
return false;
}
return true;
}
bool Scene_polyhedron_selection_item_priv::canAddFaceAndVertex(fg_halfedge_descriptor hc, fg_halfedge_descriptor t)
{
bool found(false), is_border_h(false);
//if the selected halfedge is not a border, stop and signal it.
if(is_border(hc,*polyhedron()))
is_border_h = true;
else if(is_border(opposite(hc,*polyhedron()),*polyhedron()))
{
hc = opposite(hc,*polyhedron());
is_border_h = true;
}
if(!is_border_h)
{
tempInstructions("Edge not selected : no shared border found.",
"Select the second edge. (2/2)");
return false;
}
//if the halfedges are the same, stop and signal it.
if(hc == t)
{
tempInstructions("Edge not selected : halfedges must be different.",
"Select the second edge. (2/2)");
return false;
}
//if the halfedges are not on the same border, stop and signal it.
fg_halfedge_descriptor iterator = next(t, *item->polyhedron());
while(iterator != t)
{
if(iterator == hc)
{
found = true;
CGAL::Euler::add_vertex_and_face_to_border(t,hc, *item->polyhedron());
break;
}
iterator = next(iterator, *item->polyhedron());
}
if(!found)
{
tempInstructions("Edge not selected : no shared border found.",
"Select the second edge. (2/2)");
return false;
}
return true;
}
void Scene_polyhedron_selection_item::clearHL()
{
HL_selected_edges.clear();
HL_selected_facets.clear();
HL_selected_vertices.clear();
getTriangleContainer(Priv::HL_facets)->reset_vbos(ALL);
getEdgeContainer(Priv::HL_edges)->reset_vbos(ALL);
getPointContainer(Priv::HL_points)->reset_vbos(ALL);
setBuffersFilled(false);
d->are_HL_buffers_filled = false;
Q_EMIT itemChanged();
}
void Scene_polyhedron_selection_item::selected_HL(const std::set<fg_vertex_descriptor>& m)
{
HL_selected_edges.clear();
HL_selected_facets.clear();
HL_selected_vertices.clear();
for(auto it : m)
HL_selected_vertices.insert(it);
getTriangleContainer(Priv::HL_facets)->reset_vbos(ALL);
getEdgeContainer(Priv::HL_edges)->reset_vbos(ALL);
getPointContainer(Priv::HL_points)->reset_vbos(ALL);
setBuffersFilled(false);
d->are_HL_buffers_filled = false;
Q_EMIT itemChanged();
}
void Scene_polyhedron_selection_item::selected_HL(const std::set<fg_face_descriptor>& m)
{
HL_selected_edges.clear();
HL_selected_facets.clear();
HL_selected_vertices.clear();
for(auto it : m)
HL_selected_facets.insert(it);
getTriangleContainer(Priv::HL_facets)->reset_vbos(ALL);
getEdgeContainer(Priv::HL_edges)->reset_vbos(ALL);
getPointContainer(Priv::HL_points)->reset_vbos(ALL);
setBuffersFilled(false);
d->are_HL_buffers_filled = false;
Q_EMIT itemChanged();
}
void Scene_polyhedron_selection_item::selected_HL(const std::set<fg_edge_descriptor>& m)
{
HL_selected_edges.clear();
HL_selected_facets.clear();
HL_selected_vertices.clear();
for(auto it : m)
HL_selected_edges.insert(it);
getTriangleContainer(Priv::HL_facets)->reset_vbos(ALL);
getEdgeContainer(Priv::HL_edges)->reset_vbos(ALL);
getPointContainer(Priv::HL_points)->reset_vbos(ALL);
d->are_HL_buffers_filled = false;
setBuffersFilled(false);
Q_EMIT itemChanged();
}
void Scene_polyhedron_selection_item::reset_numbers()
{
d->num_faces = num_faces(*poly_item->polyhedron());
d->num_vertices = num_vertices(*poly_item->polyhedron());
d->num_edges = num_edges(*poly_item->polyhedron());
}
void Scene_polyhedron_selection_item::init(Scene_face_graph_item* poly_item, QMainWindow* mw)
{
this->poly_item = poly_item;
d->poly =poly_item->polyhedron();
d->num_faces = num_faces(*poly_item->polyhedron());
d->num_vertices = num_vertices(*poly_item->polyhedron());
d->num_edges = num_edges(*poly_item->polyhedron());
connect(poly_item, SIGNAL(item_is_about_to_be_changed()), this, SLOT(poly_item_changed()));
//parameters type must be of the same name here and there, so they must be hardcoded.
connect(&k_ring_selector, SIGNAL(selected(const std::set<fg_vertex_descriptor>&)), this,
SLOT(selected(const std::set<fg_vertex_descriptor>&)));
connect(&k_ring_selector, SIGNAL(selected(const std::set<fg_face_descriptor>&)), this,
SLOT(selected(const std::set<fg_face_descriptor>&)));
connect(&k_ring_selector, SIGNAL(selected(const std::set<fg_edge_descriptor>&)), this,
SLOT(selected(const std::set<fg_edge_descriptor>&)));
connect(&k_ring_selector, SIGNAL(selected_HL(const std::set<fg_vertex_descriptor>&)), this,
SLOT(selected_HL(const std::set<fg_vertex_descriptor>&)));
connect(&k_ring_selector, SIGNAL(selected_HL(const std::set<fg_face_descriptor>&)), this,
SLOT(selected_HL(const std::set<fg_face_descriptor>&)));
connect(&k_ring_selector, SIGNAL(selected_HL(const std::set<fg_edge_descriptor>&)), this,
SLOT(selected_HL(const std::set<fg_edge_descriptor>&)));
connect(&k_ring_selector, SIGNAL(clearHL()), this,
SLOT(clearHL()));
connect(poly_item, SIGNAL(selection_done()), this, SLOT(update_poly()));
connect(&k_ring_selector, SIGNAL(endSelection()), this,SLOT(endSelection()));
connect(&k_ring_selector, SIGNAL(toogle_insert(bool)), this,SLOT(toggle_insert(bool)));
connect(&k_ring_selector,SIGNAL(isCurrentlySelected(Scene_facegraph_item_k_ring_selection*)), this, SIGNAL(isCurrentlySelected(Scene_facegraph_item_k_ring_selection*)));
k_ring_selector.init(poly_item, mw, Active_handle::VERTEX, -1);
connect(&k_ring_selector, SIGNAL(resetIsTreated()), this, SLOT(resetIsTreated()));
connect(poly_item, &Scene_surface_mesh_item::itemChanged, this, [this](){
std::size_t new_num_faces = num_faces(*this->poly_item->face_graph());
std::size_t new_num_vertices = num_vertices(*this->poly_item->face_graph());
std::size_t new_num_edges = num_edges(*this->poly_item->face_graph());
if(new_num_faces != d->num_faces
&& !d->keep_selection_valid.testFlag(Facet))
{
selected_facets.clear();
d->num_faces = new_num_faces ;
}
if(new_num_vertices!= d->num_vertices
&& !d->keep_selection_valid.testFlag(Vertex))
{
selected_vertices.clear();
d->num_vertices = new_num_vertices ;
}
if(new_num_edges!= d->num_edges
&& !d->keep_selection_valid.testFlag(Edge))
{
selected_edges.clear();
d->num_edges = new_num_edges ;
}
invalidateOpenGLBuffers();
redraw();
});
d->manipulated_frame = new ManipulatedFrame();
Q_FOREACH(CGAL::QGLViewer* v, CGAL::QGLViewer::QGLViewerPool())
v->installEventFilter(this);
mw->installEventFilter(this);
connect(mw, SIGNAL(newViewerCreated(QObject*)),
this, SLOT(connectNewViewer(QObject*)));
}
void Scene_polyhedron_selection_item::select_all_NT()
{
for(fg_face_descriptor fd : faces(*polyhedron())){
if(! is_triangle(halfedge(fd,*polyhedron()), *polyhedron()))
selected_facets.insert(fd);
}
invalidateOpenGLBuffers();
Q_EMIT itemChanged();
}
void Scene_polyhedron_selection_item::selection_changed(bool)
{
bool do_bind_select = true;
if(qobject_cast<Scene_polyhedron_selection_item*>(
Three::scene()->item(Three::scene()->mainSelectionIndex())))
do_bind_select = false;
if(do_bind_select)
Q_FOREACH(CGAL::QGLViewer* v, CGAL::QGLViewer::QGLViewerPool()){
CGAL::Three::Viewer_interface* viewer = dynamic_cast<CGAL::Three::Viewer_interface*>(v);
viewer->setBindingSelect();
}
else
Q_FOREACH(CGAL::QGLViewer* v, CGAL::QGLViewer::QGLViewerPool()){
CGAL::Three::Viewer_interface* viewer = dynamic_cast<CGAL::Three::Viewer_interface*>(v);
viewer->setNoBinding();
}
}
void Scene_polyhedron_selection_item::printPrimitiveId(QPoint p, CGAL::Three::Viewer_interface* viewer)
{
d->item->polyhedron_item()->printPrimitiveId(p, viewer);
}
bool Scene_polyhedron_selection_item::printVertexIds() const
{
return d->item->polyhedron_item()->printVertexIds();
}
bool Scene_polyhedron_selection_item::printEdgeIds() const
{
return d->item->polyhedron_item()->printEdgeIds();
}
bool Scene_polyhedron_selection_item::printFaceIds() const
{
return d->item->polyhedron_item()->printFaceIds();
}
void Scene_polyhedron_selection_item::printAllIds()
{
d->item->polyhedron_item()->printAllIds();
}
bool Scene_polyhedron_selection_item::testDisplayId(double x, double y, double z, CGAL::Three::Viewer_interface* viewer)const
{
return d->item->polyhedron_item()->testDisplayId(x, y, z, viewer);
}
bool Scene_polyhedron_selection_item::shouldDisplayIds(CGAL::Three::Scene_item *current_item) const
{
return d->item->polyhedron_item() == current_item;
}
void Scene_polyhedron_selection_item::select_boundary()
{
Face_graph* fg = polyhedron_item()->face_graph();
for(fg_halfedge_descriptor hd : halfedges(*fg))
{
if(is_border_edge(hd, *fg))
{
selected_edges.insert(edge(hd, *fg));
}
}
invalidateOpenGLBuffers();
redraw();
}
QString
Scene_polyhedron_selection_item::toolTip() const
{
if(!poly_item || !poly_item->polyhedron())
return QString();
return QObject::tr("<p>Selection <b>%1</b> (mode: %5, color: %6)</p>"
"<p>Number of vertices: %2<br />"
"Number of edges: %3<br />"
"Number of faces: %4</p>")
.arg(this->name())
.arg(selected_vertices.size())
.arg(selected_edges.size())
.arg(selected_facets.size())
.arg(this->renderingModeName())
.arg(this->color().name());
}
void Scene_polyhedron_selection_item::initializeBuffers(Viewer_interface *v) const
{
d->initializeBuffers(v);
d->initialize_temp_buffers(v);
d->initialize_HL_buffers(v);
}
void Scene_polyhedron_selection_item::computeElements() const
{
if(!are_buffers_filled)
{
d->computeElements();
are_buffers_filled = true;
}
if(!d->are_temp_buffers_filled)
{
d->compute_temp_elements();
d->are_temp_buffers_filled = true;
}
if(!d->are_HL_buffers_filled)
{
d->compute_HL_elements();
d->are_HL_buffers_filled = true;
}
setBuffersFilled(true);
}
QString Scene_polyhedron_selection_item::computeStats(int type)
{
if(!d->filtered_graph)
{
d->filtered_graph = new CGAL::Face_filtered_graph<SMesh>(*d->poly, selected_facets);
}
double minl, maxl, meanl, midl;
unsigned int number_of_null_length_edges;
switch (type)
{
case MIN_LENGTH:
case MAX_LENGTH:
case MED_LENGTH:
case MEAN_LENGTH:
case NB_DEGENERATE_EDGES:
if(selected_edges.size() == 0)
return QString("n/a");
else
edges_length(d->poly, selected_edges, minl, maxl, meanl, midl, number_of_null_length_edges);
}
double mini, maxi, ave;
switch (type)
{
case MIN_ANGLE:
case MAX_ANGLE:
case MEAN_ANGLE:
if(selected_facets.size() == 0)
return QString("n/a");
else
angles(d->poly, selected_facets, mini, maxi, ave);
}
double min_area, max_area, med_area, mean_area;
switch (type)
{
case MIN_AREA:
case MAX_AREA:
case MEAN_AREA:
case MED_AREA:
if(selected_facets.size() == 0)
return QString("n/a");
else{
if(!is_triangle_mesh(*d->poly))
{
return QString("n/a");
}
faces_area(d->poly, selected_facets, min_area, max_area, mean_area, med_area);
}
}
double min_altitude, min_ar, max_ar, mean_ar;
switch (type)
{
case MIN_ALTITUDE:
case MIN_ASPECT_RATIO:
case MAX_ASPECT_RATIO:
case MEAN_ASPECT_RATIO:
if(selected_facets.size() == 0)
return QString("n/a");
else
{
if(!is_triangle_mesh(*d->poly))
{
return QString("n/a");
}
faces_aspect_ratio(d->poly, selected_facets,min_altitude, min_ar, max_ar, mean_ar);
}
}
switch(type)
{
case NB_VERTICES:
{
std::set<fg_vertex_descriptor> total_vertices;
for(auto v : selected_vertices)
{
total_vertices.insert(v);
}
for(auto e : selected_edges)
{
total_vertices.insert(target(e, *d->poly));
total_vertices.insert(source(e, *d->poly));
}
for(auto f : selected_facets)
{
for (auto v : CGAL::vertices_around_face(halfedge(f, *d->poly), *d->poly))
{
total_vertices.insert(v);
}
}
return QString::number(total_vertices.size());
}
case NB_FACETS:
return QString::number(selected_facets.size());
case NB_CONNECTED_COMPOS:
{
// Extract the part n°0 of the partition into a new, independent mesh
if(selected_facets.size() == 0)
return QString("n/a");
boost::vector_property_map<int, boost::property_map<CGAL::Face_filtered_graph<SMesh>, boost::face_index_t>::type>
fccmap(get(boost::face_index, *d->filtered_graph));
return QString::number(CGAL::Polygon_mesh_processing::connected_components(*d->filtered_graph, fccmap));
}
case NB_BORDER_EDGES:
{
int i=0;
for(halfedge_descriptor hd : halfedges(*d->poly))
{
if(is_border(hd, *d->poly)
&& selected_edges.find(edge(hd, *d->poly)) != selected_edges.end())
++i;
}
return QString::number(i);
}
case NB_EDGES:{
std::set<fg_edge_descriptor> total_edges;
for(auto e : selected_edges)
{
total_edges.insert(e);
}
for(auto f : selected_facets)
{
for (auto e : CGAL::edges_around_face(halfedge(f, *d->poly), *d->poly))
{
total_edges.insert(e);
}
}
return QString::number(total_edges.size());
}
case VOLUME:
return QString("n/a");
break;
case GENUS:
return QString("n/a");
break;
case NB_DEGENERATE_FACES:
{
if(is_triangle_mesh(*d->poly))
{
if(selected_facets.size() == 0)
return QString("n/a");
return QString::number(nb_degenerate_faces(d->filtered_graph));
}
else
return QString("n/a");
}
case AREA:
{
if(is_triangle_mesh(*d->poly))
{
if(selected_facets.size() == 0)
return QString("n/a");
return QString::number(CGAL::Polygon_mesh_processing::area(*d->filtered_graph));
}
else
return QString("n/a");
}
case SELFINTER:
{
if(selected_facets.size() == 0)
return QString("n/a");
if(is_triangle_mesh(*d->poly)){
bool self_intersect
= CGAL::Polygon_mesh_processing::does_self_intersect<CGAL::Parallel_if_available_tag>(*(d->poly));
if (self_intersect)
return QString("Yes");
else
return QString("No");
}
return QString("n/a");
}
case MIN_LENGTH:
return QString::number(minl);
case MAX_LENGTH:
return QString::number(maxl);
case MED_LENGTH:
return QString::number(midl);
case MEAN_LENGTH:
return QString::number(meanl);
case NB_DEGENERATE_EDGES:
return QString::number(number_of_null_length_edges);
case MIN_ANGLE:
return QString::number(mini);
case MAX_ANGLE:
return QString::number(maxi);
case MEAN_ANGLE:
return QString::number(ave);
case NB_HOLES:
{
return QString("n/a");
}
case MIN_AREA:
return QString::number(min_area);
case MAX_AREA:
return QString::number(max_area);
case MED_AREA:
return QString::number(med_area);
case MEAN_AREA:
return QString::number(mean_area);
case MIN_ALTITUDE:
return QString::number(min_altitude);
case MIN_ASPECT_RATIO:
return QString::number(min_ar);
case MAX_ASPECT_RATIO:
return QString::number(max_ar);
case MEAN_ASPECT_RATIO:
return QString::number(mean_ar);
case IS_PURE_TRIANGLE:
if(selected_facets.size() == 0)
return QString("n/a");
else
{
if(is_triangle_mesh(*d->poly))
return QString("yes");
else
return QString("no");
}
case IS_PURE_QUAD:
{
if(selected_facets.size() == 0)
return QString("n/a");
if (is_quad_mesh(*d->filtered_graph))
return QString("yes");
else
return QString("no");
}
}//end switch
return QString();
}
CGAL::Three::Scene_item::Header_data Scene_polyhedron_selection_item::header() const
{
CGAL::Three::Scene_item::Header_data data;
//categories
data.categories.append(std::pair<QString,int>(QString("Properties"),8));
data.categories.append(std::pair<QString,int>(QString("Vertices"),1));
data.categories.append(std::pair<QString,int>(QString("Faces"),10));
data.categories.append(std::pair<QString,int>(QString("Edges"),7));
data.categories.append(std::pair<QString,int>(QString("Angles"),3));
//titles
data.titles.append(QString("#Connected Components"));
data.titles.append(QString("#Connected Components of the Boundary"));
data.titles.append(QString("Genus"));
data.titles.append(QString("Pure Triangle"));
data.titles.append(QString("Pure Quad"));
data.titles.append(QString("Area"));
data.titles.append(QString("Volume"));
data.titles.append(QString("Self-Intersecting"));
data.titles.append(QString("#Vertices"));
data.titles.append(QString("#Faces"));
data.titles.append(QString("#Degenerate Faces"));
data.titles.append(QString("Min Area"));
data.titles.append(QString("Max Area"));
data.titles.append(QString("Median Area"));
data.titles.append(QString("Mean Area"));
data.titles.append(QString("Min Altitude"));
data.titles.append(QString("Min Aspect-Ratio"));
data.titles.append(QString("Max Aspect-Ratio"));
data.titles.append(QString("Mean Aspect-Ratio"));
data.titles.append(QString("#Edges"));
data.titles.append(QString("#Border Edges"));
data.titles.append(QString("#Degenerate Edges"));
data.titles.append(QString("Minimum Length"));
data.titles.append(QString("Maximum Length"));
data.titles.append(QString("Median Length"));
data.titles.append(QString("Mean Length"));
data.titles.append(QString("Minimum"));
data.titles.append(QString("Maximum"));
data.titles.append(QString("Average"));
return data;
}
void Scene_polyhedron_selection_item::updateDisplayedIds(QEvent* e)
{
if(e->type() == QEvent::MouseButtonRelease )
{
QMouseEvent* mouse_event = static_cast<QMouseEvent*>(e);
if((mouse_event->button() == Qt::RightButton || mouse_event->button() == Qt::MiddleButton)
&& temp_selected_vertices.size() == 1) {
fg_vertex_descriptor vh = *temp_selected_vertices.begin();
poly_item->updateIds(vh);
}
}
}
void Scene_polyhedron_selection_item::poly_item_changed()
{
if(d->keep_selection_valid != None)
{
Update_indices_visitor visitor(selected_vertices,
selected_edges,
selected_facets,
*polyhedron());
polyhedron()->collect_garbage(visitor);
}
else
{
if(!d->keep_selection_valid.testFlag(Vertex))
remove_erased_handles<fg_vertex_descriptor>();
if(!d->keep_selection_valid.testFlag(Edge))
remove_erased_handles<fg_edge_descriptor>();
if(!d->keep_selection_valid.testFlag(Facet))
remove_erased_handles<fg_face_descriptor>();
}
compute_normal_maps();
}
void Scene_polyhedron_selection_item::setKeepSelectionValid(SelectionTypes type)
{
d->keep_selection_valid = type;
}