cgal/Cartesian_kernel/include/CGAL/Cartesian/function_objects.h

3380 lines
91 KiB
C++

// Copyright (c) 1999-2005 Utrecht University (The Netherlands),
// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),
// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg
// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Stefan Schirra, Sylvain Pion, Michael Hoffmann
#ifndef CGAL_CARTESIAN_FUNCTION_OBJECTS_H
#define CGAL_CARTESIAN_FUNCTION_OBJECTS_H
#include <CGAL/Kernel/function_objects.h>
#include <CGAL/predicates/kernel_ftC2.h>
#include <CGAL/predicates/kernel_ftC3.h>
#include <CGAL/constructions/kernel_ftC2.h>
#include <CGAL/constructions/kernel_ftC3.h>
#include <CGAL/Cartesian/solve_3.h>
CGAL_BEGIN_NAMESPACE
namespace CartesianKernelFunctors {
using namespace CommonKernelFunctors;
template <typename K>
class Angle_2
{
typedef typename K::Point_2 Point_2;
public:
typedef typename K::Angle result_type;
typedef Arity_tag< 3 > Arity;
result_type
operator()(const Point_2& p, const Point_2& q, const Point_2& r) const
{ return angleC2(p.x(), p.y(), q.x(), q.y(), r.x(), r.y()); }
};
template <typename K>
class Angle_3
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Angle result_type;
typedef Arity_tag< 3 > Arity;
result_type
operator()(const Point_3& p, const Point_3& q, const Point_3& r) const
{
return angleC3(p.x(), p.y(), p.z(),
q.x(), q.y(), q.z(),
r.x(), r.y(), r.z());
}
};
template <typename K>
class Are_parallel_2
{
typedef typename K::Line_2 Line_2;
typedef typename K::Segment_2 Segment_2;
typedef typename K::Ray_2 Ray_2;
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()(const Line_2& l1, const Line_2& l2) const
{ return parallelC2(l1.a(), l1.b(), l2.a(), l2.b()); }
result_type
operator()(const Segment_2& s1, const Segment_2& s2) const
{ return parallelC2(s1.source().x(), s1.source().y(),
s1.target().x(), s1.target().y(),
s2.source().x(), s2.source().y(),
s2.target().x(), s2.target().y());
}
result_type
operator()(const Ray_2& r1, const Ray_2& r2) const
{ return parallelC2(r1.source().x(), r1.source().y(),
r1.second_point().x(), r1.second_point().y(),
r2.source().x(), r2.source().y(),
r2.second_point().x(), r2.second_point().y());
}
};
template <typename K>
class Are_parallel_3
{
typedef typename K::Line_3 Line_3;
typedef typename K::Segment_3 Segment_3;
typedef typename K::Ray_3 Ray_3;
typedef typename K::Plane_3 Plane_3;
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()(const Line_3& l1, const Line_3& l2) const
{ return parallelC3(
l1.to_vector().x(), l1.to_vector().y(), l1.to_vector().z(),
l2.to_vector().x(), l2.to_vector().y(), l2.to_vector().z());
}
result_type
operator()(const Plane_3& h1, const Plane_3& h2) const
{ return parallelC3(h1.a(), h1.b(), h1.c(),
h2.a(), h2.b(), h2.c());
}
result_type
operator()(const Segment_3& s1, const Segment_3& s2) const
{ return parallelC3(s1.source().x(), s1.source().y(), s1.source().z(),
s1.target().x(), s1.target().y(), s1.target().z(),
s2.source().x(), s2.source().y(), s2.source().z(),
s2.target().x(), s2.target().y(), s2.target().z());
}
result_type
operator()(const Ray_3& r1, const Ray_3& r2) const
{ return parallelC3(r1.source().x(), r1.source().y(), r1.source().z(),
r1.second_point().x(), r1.second_point().y(), r1.second_point().z(),
r2.source().x(), r2.source().y(), r2.source().z(),
r2.second_point().x(), r2.second_point().y(), r2.second_point().z());
}
};
template <typename K>
class Bounded_side_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Circle_2 Circle_2;
typedef typename K::Triangle_2 Triangle_2;
typedef typename K::Iso_rectangle_2 Iso_rectangle_2;
public:
typedef typename K::Bounded_side result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()( const Circle_2& c, const Point_2& p) const
{
typename K::Compute_squared_distance_2 squared_distance;
return enum_cast<Bounded_side>(CGAL_NTS compare(c.squared_radius(),
squared_distance(c.center(),p)));
}
result_type
operator()( const Triangle_2& t, const Point_2& p) const
{
typename K::Collinear_are_ordered_along_line_2
collinear_are_ordered_along_line;
typename K::Orientation_2 orientation;
typename K::Orientation o1 = orientation(t.vertex(0), t.vertex(1), p),
o2 = orientation(t.vertex(1), t.vertex(2), p),
o3 = orientation(t.vertex(2), t.vertex(3), p);
if (o2 == o1 && o3 == o1)
return ON_BOUNDED_SIDE;
return
(o1 == COLLINEAR
&& collinear_are_ordered_along_line(t.vertex(0), p, t.vertex(1))) ||
(o2 == COLLINEAR
&& collinear_are_ordered_along_line(t.vertex(1), p, t.vertex(2))) ||
(o3 == COLLINEAR
&& collinear_are_ordered_along_line(t.vertex(2), p, t.vertex(3)))
? ON_BOUNDARY
: ON_UNBOUNDED_SIDE;
}
result_type
operator()( const Iso_rectangle_2& r, const Point_2& p) const
{
bool x_incr = (r.xmin() < p.x()) && (p.x() < r.xmax()),
y_incr = (r.ymin() < p.y()) && (p.y() < r.ymax());
if (x_incr)
{
if (y_incr)
return ON_BOUNDED_SIDE;
if ( (p.y() == r.ymin()) || (r.ymax() == p.y()) )
return ON_BOUNDARY;
}
if ( (p.x() == r.xmin()) || (r.xmax() == p.x()) )
if ( y_incr || (p.y() == r.ymin()) || (r.ymax() == p.y()) )
return ON_BOUNDARY;
return ON_UNBOUNDED_SIDE;
}
};
template <typename K>
class Bounded_side_3
{
typedef typename K::FT FT;
typedef typename K::Point_3 Point_3;
typedef typename K::Sphere_3 Sphere_3;
typedef typename K::Tetrahedron_3 Tetrahedron_3;
typedef typename K::Iso_cuboid_3 Iso_cuboid_3;
public:
typedef typename K::Bounded_side result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()( const Sphere_3& s, const Point_3& p) const
{ return s.rep().bounded_side(p); }
result_type
operator()( const Tetrahedron_3& t, const Point_3& p) const
{
FT alpha, beta, gamma;
solve(t.vertex(1)-t.vertex(0),
t.vertex(2)-t.vertex(0),
t.vertex(3)-t.vertex(0),
p - t.vertex(0), alpha, beta, gamma);
if ( (alpha < 0) || (beta < 0) || (gamma < 0)
|| (alpha + beta + gamma > 1) )
return ON_UNBOUNDED_SIDE;
if ( (alpha == 0) || (beta == 0) || (gamma == 0)
|| (alpha+beta+gamma == 1) )
return ON_BOUNDARY;
return ON_BOUNDED_SIDE;
}
result_type
operator()( const Iso_cuboid_3& c, const Point_3& p) const
{
return c.rep().bounded_side(p);
}
};
template <typename K>
class Collinear_are_ordered_along_line_2
{
typedef typename K::Point_2 Point_2;
#ifdef CGAL_kernel_exactness_preconditions
typedef typename K::Collinear_2 Collinear_2;
Collinear_2 c;
#endif // CGAL_kernel_exactness_preconditions
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 3 > Arity;
#ifdef CGAL_kernel_exactness_preconditions
Collinear_are_ordered_along_line_2() {}
Collinear_are_ordered_along_line_2(const Collinear_2& c_) : c(c_) {}
#endif // CGAL_kernel_exactness_preconditions
result_type
operator()(const Point_2& p, const Point_2& q, const Point_2& r) const
{
CGAL_kernel_exactness_precondition( c(p, q, r) );
return collinear_are_ordered_along_lineC2
(p.x(), p.y(), q.x(), q.y(), r.x(), r.y());
}
};
template <typename K>
class Collinear_are_ordered_along_line_3
{
typedef typename K::Point_3 Point_3;
#ifdef CGAL_kernel_exactness_preconditions
typedef typename K::Collinear_3 Collinear_3;
Collinear_3 c;
#endif // CGAL_kernel_exactness_preconditions
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 3 > Arity;
#ifdef CGAL_kernel_exactness_preconditions
Collinear_are_ordered_along_line_3() {}
Collinear_are_ordered_along_line_3(const Collinear_3& c_) : c(c_) {}
#endif // CGAL_kernel_exactness_preconditions
result_type
operator()(const Point_3& p, const Point_3& q, const Point_3& r) const
{
CGAL_kernel_exactness_precondition( c(p, q, r) );
return collinear_are_ordered_along_lineC3(p.x(), p.y(), p.z(),
q.x(), q.y(), q.z(),
r.x(), r.y(), r.z());
}
};
template <typename K>
class Collinear_are_strictly_ordered_along_line_2
{
typedef typename K::Point_2 Point_2;
#ifdef CGAL_kernel_exactness_preconditions
typedef typename K::Collinear_2 Collinear_2;
Collinear_2 c;
#endif // CGAL_kernel_exactness_preconditions
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 3 > Arity;
#ifdef CGAL_kernel_exactness_preconditions
Collinear_are_strictly_ordered_along_line_2() {}
Collinear_are_strictly_ordered_along_line_2(const Collinear_2& c_) : c(c_)
{}
#endif // CGAL_kernel_exactness_preconditions
result_type
operator()(const Point_2& p, const Point_2& q, const Point_2& r) const
{
CGAL_kernel_exactness_precondition( c(p, q, r) );
return collinear_are_strictly_ordered_along_lineC2
(p.x(), p.y(), q.x(), q.y(), r.x(), r.y());
}
};
template <typename K>
class Collinear_are_strictly_ordered_along_line_3
{
typedef typename K::Point_3 Point_3;
#ifdef CGAL_kernel_exactness_preconditions
typedef typename K::Collinear_3 Collinear_3;
Collinear_3 c;
#endif // CGAL_kernel_exactness_preconditions
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 3 > Arity;
#ifdef CGAL_kernel_exactness_preconditions
Collinear_are_strictly_ordered_along_line_3() {}
Collinear_are_strictly_ordered_along_line_3(const Collinear_3& c_) : c(c_)
{}
#endif // CGAL_kernel_exactness_preconditions
result_type
operator()(const Point_3& p, const Point_3& q, const Point_3& r) const
{
CGAL_kernel_exactness_precondition( c(p, q, r) );
return collinear_are_strictly_ordered_along_lineC3(p.x(), p.y(), p.z(),
q.x(), q.y(), q.z(),
r.x(), r.y(), r.z());
}
};
template <typename K>
class Collinear_has_on_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Ray_2 Ray_2;
typedef typename K::Segment_2 Segment_2;
typedef typename K::Construct_point_on_2 Construct_point_on_2;
typedef typename K::Compare_x_2 Compare_x_2;
typedef typename K::Compare_y_2 Compare_y_2;
typedef typename K::Collinear_are_ordered_along_line_2
Collinear_are_ordered_along_line_2;
Construct_point_on_2 cp;
Compare_x_2 cx;
Compare_y_2 cy;
Collinear_are_ordered_along_line_2 co;
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 2 > Arity;
Collinear_has_on_2() {}
Collinear_has_on_2(const Construct_point_on_2& cp_,
const Compare_x_2& cx_,
const Compare_y_2& cy_,
const Collinear_are_ordered_along_line_2& co_)
: cp(cp_), cx(cx_), cy(cy_), co(co_)
{}
result_type
operator()( const Ray_2& r, const Point_2& p) const
{
Point_2 source = cp(r,0);
Point_2 second = cp(r,1);
switch(cx(source, second)) {
case SMALLER:
return cx(source, p) != LARGER;
case LARGER:
return cx(p, source) != LARGER;
default:
switch(cy(source, second)){
case SMALLER:
return cy(source, p) != LARGER;
case LARGER:
return cy(p, source) != LARGER;
default:
return true; // p == source
}
} // switch
}
result_type
operator()( const Segment_2& s, const Point_2& p) const
{
return co(cp(s,0), p, cp(s,1));
}
};
template <typename K>
class Collinear_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Orientation_2 Orientation_2;
Orientation_2 o;
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 3 > Arity;
Collinear_2() {}
Collinear_2(const Orientation_2 o_) : o(o_) {}
result_type
operator()(const Point_2& p, const Point_2& q, const Point_2& r) const
{ return o(p, q, r) == COLLINEAR; }
};
template <typename K>
class Collinear_3
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 3 > Arity;
result_type
operator()(const Point_3& p, const Point_3& q, const Point_3& r) const
{
return collinearC3(p.x(), p.y(), p.z(),
q.x(), q.y(), q.z(),
r.x(), r.y(), r.z());
}
};
template <typename K>
class Compare_angle_with_x_axis_2
{
typedef typename K::Direction_2 Direction_2;
public:
typedef typename K::Comparison_result result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()(const Direction_2& d1, const Direction_2& d2) const
{
return compare_angle_with_x_axisC2(d1.dx(), d1.dy(), d2.dx(), d2.dy());
}
};
template <typename K>
class Compare_distance_2
{
typedef typename K::Point_2 Point_2;
public:
typedef typename K::Comparison_result result_type;
typedef Arity_tag< 3 > Arity;
result_type
operator()(const Point_2& p, const Point_2& q, const Point_2& r) const
{
return cmp_dist_to_pointC2(p.x(), p.y(), q.x(), q.y(), r.x(), r.y());
}
};
template <typename K>
class Compare_distance_3
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Comparison_result result_type;
typedef Arity_tag< 3 > Arity;
result_type
operator()(const Point_3& p, const Point_3& q, const Point_3& r) const
{
return cmp_dist_to_pointC3(p.x(), p.y(), p.z(),
q.x(), q.y(), q.z(),
r.x(), r.y(), r.z());
}
};
template <typename K>
class Compare_slope_2
{
typedef typename K::Line_2 Line_2;
typedef typename K::Segment_2 Segment_2;
public:
typedef typename K::Comparison_result result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()(const Line_2& l1, const Line_2& l2) const
{
return compare_slopesC2(l1.a(), l1.b(), l2.a(), l2.b());
}
result_type
operator()(const Segment_2& s1, const Segment_2& s2) const
{
return compare_slopesC2(s1.source().x(), s1.source().y(),
s1.target().x(), s1.target().y(),
s2.source().x(), s2.source().y(),
s2.target().x(), s2.target().y());
}
};
template <typename K>
class Compare_x_at_y_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Line_2 Line_2;
public:
typedef typename K::Comparison_result result_type;
typedef Arity_tag< 3 > Arity;
result_type
operator()( const Point_2& p, const Line_2& h) const
{ return compare_y_at_xC2(p.y(), p.x(), h.b(), h.a(), h.c()); }
result_type
operator()( const Point_2& p, const Line_2& h1, const Line_2& h2) const
{
return compare_y_at_xC2(p.y(), h1.b(), h1.a(), h1.c(),
h2.b(), h2.a(), h2.c());
}
result_type
operator()( const Line_2& l1, const Line_2& l2, const Line_2& h) const
{
return compare_y_at_xC2(l1.b(), l1.a(), l1.c(), l2.b(), l2.a(), l2.c(),
h.b(), h.a(), h.c());
}
result_type
operator()( const Line_2& l1, const Line_2& l2,
const Line_2& h1, const Line_2& h2) const
{
return compare_y_at_xC2(l1.b(), l1.a(), l1.c(), l2.b(), l2.a(), l2.c(),
h1.b(), h1.a(), h1.c(), h2.b(), h2.a(), h2.c());
}
};
template <typename K>
class Compare_xyz_3
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Comparison_result result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()( const Point_3& p, const Point_3& q) const
{
return compare_lexicographically_xyzC3(p.x(), p.y(), p.z(),
q.x(), q.y(), q.z());
}
};
template <typename K>
class Compare_xy_2
{
typedef typename K::Point_2 Point_2;
public:
typedef typename K::Comparison_result result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()( const Point_2& p, const Point_2& q) const
{ return compare_lexicographically_xyC2(p.x(), p.y(), q.x(), q.y()); }
};
template <typename K>
class Compare_xy_3
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Comparison_result result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()( const Point_3& p, const Point_3& q) const
{ return compare_lexicographically_xyC2(p.x(), p.y(), q.x(), q.y()); }
};
template <typename K>
class Compare_x_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Line_2 Line_2;
public:
typedef typename K::Comparison_result result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()( const Point_2& p, const Point_2& q) const
{ return CGAL_NTS compare(p.x(), q.x()); }
result_type
operator()( const Point_2& p, const Line_2& l, const Line_2& h) const
{ return compare_xC2(p.x(), l.a(), l.b(), l.c(), h.a(), h.b(), h.c()); }
result_type
operator()( const Line_2& l, const Line_2& h1, const Line_2& h2) const
{
return compare_xC2(l.a(), l.b(), l.c(), h1.a(), h1.b(), h1.c(),
h2.a(), h2.b(), h2.c());
}
result_type
operator()( const Line_2& l1, const Line_2& l2,
const Line_2& h1, const Line_2& h2) const
{
return compare_xC2(l1.a(), l1.b(), l1.c(), l2.a(), l2.b(), l2.c(),
h1.a(), h1.b(), h1.c(), h2.a(), h2.b(), h2.c());
}
};
template <typename K>
class Compare_x_3
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Comparison_result result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()( const Point_3& p, const Point_3& q) const
{ return CGAL_NTS compare(p.x(), q.x()); }
};
template <typename K>
class Compare_yx_2
{
typedef typename K::Point_2 Point_2;
public:
typedef typename K::Comparison_result result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()( const Point_2& p, const Point_2& q) const
{ return compare_lexicographically_xyC2(p.y(), p.x(), q.y(), q.x()); }
};
template <typename K>
class Compare_y_at_x_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Line_2 Line_2;
typedef typename K::Segment_2 Segment_2;
public:
typedef typename K::Comparison_result result_type;
typedef Arity_tag< 3 > Arity;
result_type
operator()( const Point_2& p, const Line_2& h) const
{ return compare_y_at_xC2(p.x(), p.y(), h.a(), h.b(), h.c()); }
result_type
operator()( const Point_2& p, const Line_2& h1, const Line_2& h2) const
{
return compare_y_at_xC2(p.x(), h1.a(), h1.b(), h1.c(),
h2.a(), h2.b(), h2.c());
}
result_type
operator()( const Line_2& l1, const Line_2& l2, const Line_2& h) const
{
return compare_y_at_xC2(l1.a(), l1.b(), l1.c(), l2.a(), l2.b(), l2.c(),
h.a(), h.b(), h.c());
}
result_type
operator()( const Line_2& l1, const Line_2& l2,
const Line_2& h1, const Line_2& h2) const
{
return compare_y_at_xC2(l1.a(), l1.b(), l1.c(), l2.a(), l2.b(), l2.c(),
h1.a(), h1.b(), h1.c(), h2.a(), h2.b(), h2.c());
}
result_type
operator()( const Point_2& p, const Segment_2& s) const
{
return compare_y_at_xC2(p.x(), p.y(),
s.source().x(), s.source().y(),
s.target().x(), s.target().y());
}
result_type
operator()( const Point_2& p,
const Segment_2& s1, const Segment_2& s2) const
{
return compare_y_at_x_segment_C2(p.x(),
s1.source().x(), s1.source().y(),
s1.target().x(), s1.target().y(),
s2.source().x(), s2.source().y(),
s2.target().x(), s2.target().y());
}
};
template <typename K>
class Compare_y_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Line_2 Line_2;
public:
typedef typename K::Comparison_result result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()( const Point_2& p, const Point_2& q) const
{ return CGAL_NTS compare(p.y(), q.y()); }
result_type
operator()( const Point_2& p, const Line_2& l1, const Line_2& l2) const
{
return compare_xC2(p.y(),
l1.b(), l1.a(), l1.c(),
l2.b(), l2.a(), l2.c());
}
result_type
operator()( const Line_2& l, const Line_2& h1, const Line_2& h2) const
{
return compare_xC2(l.b(), l.a(), l.c(), h1.b(), h1.a(), h1.c(),
l.b(), l.a(), l.c(), h2.b(), h2.a(), h2.c());
}
result_type
operator()( const Line_2& l1, const Line_2& l2,
const Line_2& h1, const Line_2& h2) const
{
return compare_xC2(l1.b(), l1.a(), l1.c(), l2.b(), l2.a(), l2.c(),
h1.b(), h1.a(), h1.c(), h2.b(), h2.a(), h2.c());
}
};
template <typename K>
class Compare_y_3
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Comparison_result result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()( const Point_3& p, const Point_3& q) const
{ return CGAL_NTS compare(p.y(), q.y()); }
};
template <typename K>
class Compare_z_3
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Comparison_result result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()( const Point_3& p, const Point_3& q) const
{ return CGAL_NTS compare(p.z(), q.z()); }
};
template <typename K>
class Compute_area_2
{
typedef typename K::FT FT;
typedef typename K::Iso_rectangle_2 Iso_rectangle_2;
typedef typename K::Triangle_2 Triangle_2;
typedef typename K::Point_2 Point_2;
public:
typedef FT result_type;
typedef Arity_tag< 1 > Arity;
result_type
operator()( const Point_2& p, const Point_2& q, const Point_2& r ) const
{
FT v1x = q.x() - p.x();
FT v1y = q.y() - p.y();
FT v2x = r.x() - p.x();
FT v2y = r.y() - p.y();
return det2x2_by_formula(v1x, v1y, v2x, v2y)/2;
}
result_type
operator()( const Iso_rectangle_2& r ) const
{ return (r.xmax()-r.xmin()) * (r.ymax()-r.ymin()); }
result_type
operator()( const Triangle_2& t ) const
{ return t.area(); }
};
template <typename K>
class Compute_determinant_2
{
typedef typename K::FT FT;
typedef typename K::Vector_2 Vector_2;
public:
typedef FT result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()(const Vector_2& v, const Vector_2& w) const
{
return det2x2_by_formula(v.x(), v.y(), w.x(), w.y());
}
};
template <typename K>
class Compute_determinant_3
{
typedef typename K::FT FT;
typedef typename K::Vector_3 Vector_3;
public:
typedef FT result_type;
typedef Arity_tag< 3 > Arity;
result_type
operator()(const Vector_3& v, const Vector_3& w, const Vector_3& t) const
{
return det3x3_by_formula(v.x(), v.y(), v.z(),
w.x(), w.y(), w.z(),
t.x(), t.y(), t.z());
}
};
template <typename K>
class Compute_scalar_product_2
{
typedef typename K::FT FT;
typedef typename K::Vector_2 Vector_2;
public:
typedef FT result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()(const Vector_2& v, const Vector_2& w) const
{
return v.x() * w.x() + v.y() * w.y();
}
};
template <typename K>
class Compute_scalar_product_3
{
typedef typename K::FT FT;
typedef typename K::Vector_3 Vector_3;
public:
typedef FT result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()(const Vector_3& v, const Vector_3& w) const
{
return v.x() * w.x() + v.y() * w.y() + v.z() * w.z();
}
};
template <typename K>
class Compute_squared_area_3
{
typedef typename K::FT FT;
typedef typename K::Point_3 Point_3;
typedef typename K::Triangle_3 Triangle_3;
public:
typedef FT result_type;
typedef Arity_tag< 1 > Arity;
result_type
operator()( const Triangle_3& t ) const
{
return this->operator()(t.vertex(0), t.vertex(1), t.vertex(2));
}
result_type
operator()( const Point_3& p, const Point_3& q, const Point_3& r ) const
{
return squared_areaC3(p.x(), p.y(), p.z(),
q.x(), q.y(), q.z(),
r.x(), r.y(), r.z());
}
};
// FIXME
template <typename K>
class Compute_squared_distance_Point_Point_2
{
typedef typename K::FT FT;
typedef typename K::Point_2 Point_2;
public:
typedef FT result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()( const Point_2& p, const Point_2& q) const
{
return squared_distanceC2(p.x(), p.y(), q.x(), q.y());
}
};
// TODO ...
template <typename K>
class Compute_squared_radius_2
{
typedef typename K::FT FT;
typedef typename K::Point_2 Point_2;
typedef typename K::Circle_2 Circle_2;
public:
typedef FT result_type;
typedef Arity_tag< 1 > Arity;
const result_type&
operator()( const Circle_2& c) const
{ return c.rep().squared_radius(); }
result_type
operator()( const Point_2& p, const Point_2& q) const
{ return squared_radiusC2(p.x(), p.y(), q.x(), q.y()); }
result_type
operator()( const Point_2& p, const Point_2& q, const Point_2& r) const
{ return squared_radiusC2(p.x(), p.y(), q.x(), q.y(), r.x(), r.y()); }
};
} //namespace CartesianKernelFunctors
#ifndef CGAL_CFG_DONT_OVERLOAD_TOO_MUCH
template < typename K>
struct Qualified_result_of<CartesianKernelFunctors::Compute_squared_radius_2<K>,
typename K::Circle_2>
{
typedef typename K::FT const & type;
};
#endif
// For the non specialized template will do the right thing,
// namely return a copy of an FT
namespace CartesianKernelFunctors {
template <typename K>
class Compute_squared_radius_3
{
typedef typename K::FT FT;
typedef typename K::Point_3 Point_3;
typedef typename K::Sphere_3 Sphere_3;
public:
typedef FT result_type;
typedef Arity_tag< 1 > Arity;
result_type
operator()( const Sphere_3& s) const
{ return s.rep().squared_radius(); }
result_type
operator()( const Point_3& p, const Point_3& q) const
{
return squared_radiusC3(p.x(), p.y(), p.z(),
q.x(), q.y(), q.z());
}
result_type
operator()( const Point_3& p, const Point_3& q, const Point_3& r) const
{
return squared_radiusC3(p.x(), p.y(), p.z(),
q.x(), q.y(), q.z(),
r.x(), r.y(), r.z());
}
result_type
operator()( const Point_3& p, const Point_3& q,
const Point_3& r, const Point_3& s) const
{
return squared_radiusC3(p.x(), p.y(), p.z(),
q.x(), q.y(), q.z(),
r.x(), r.y(), r.z(),
s.x(), s.y(), s.z());
}
};
template <typename K>
class Compute_volume_3
{
typedef typename K::FT FT;
typedef typename K::Point_3 Point_3;
typedef typename K::Tetrahedron_3 Tetrahedron_3;
typedef typename K::Iso_cuboid_3 Iso_cuboid_3;
public:
typedef FT result_type;
typedef Arity_tag< 1 > Arity;
result_type
operator()(const Point_3& p0, const Point_3& p1,
const Point_3& p2, const Point_3& p3) const
{
return det3x3_by_formula<FT>(p1.x()-p0.x(), p1.y()-p0.y(), p1.z()-p0.z(),
p2.x()-p0.x(), p2.y()-p0.y(), p2.z()-p0.z(),
p3.x()-p0.x(), p3.y()-p0.y(), p3.z()-p0.z())/6;
}
result_type
operator()( const Tetrahedron_3& t ) const
{
return this->operator()(t.vertex(0), t.vertex(1),
t.vertex(2), t.vertex(3));
}
result_type
operator()( const Iso_cuboid_3& c ) const
{ return c.rep().volume(); }
};
template <typename K>
class Compute_x_2 : Has_qrt
{
typedef typename K::FT FT;
typedef typename K::Point_2 Point_2;
typedef typename K::Vector_2 Vector_2;
public:
typedef FT result_type;
typedef Arity_tag< 1 > Arity;
const result_type &
operator()(const Point_2& p) const
{
return p.rep().x();
}
const result_type &
operator()(const Vector_2& v) const
{
return v.rep().x();
}
};
template <typename K>
class Compute_x_3 : Has_qrt
{
typedef typename K::FT FT;
typedef typename K::Point_3 Point_3;
typedef typename K::Vector_3 Vector_3;
public:
typedef FT result_type;
typedef Arity_tag< 1 > Arity;
const result_type &
operator()(const Point_3& p) const
{
return p.rep().x();
}
const result_type &
operator()(const Vector_3& v) const
{
return v.rep().x();
}
};
template <typename K>
class Compute_y_2 : Has_qrt
{
typedef typename K::FT FT;
typedef typename K::Point_2 Point_2;
typedef typename K::Vector_2 Vector_2;
public:
typedef FT result_type;
typedef Arity_tag< 1 > Arity;
const result_type &
operator()(const Point_2& p) const
{
return p.rep().y();
}
const result_type &
operator()(const Vector_2& v) const
{
return v.rep().y();
}
};
template <typename K>
class Compute_y_3 : Has_qrt
{
typedef typename K::FT FT;
typedef typename K::Point_3 Point_3;
typedef typename K::Vector_3 Vector_3;
public:
typedef FT result_type;
typedef Arity_tag< 1 > Arity;
const result_type &
operator()(const Point_3& p) const
{
return p.rep().y();
}
const result_type &
operator()(const Vector_3& v) const
{
return v.rep().y();
}
};
template <typename K>
class Compute_z_3 : Has_qrt
{
typedef typename K::FT FT;
typedef typename K::Point_3 Point_3;
typedef typename K::Vector_3 Vector_3;
public:
typedef FT result_type;
typedef Arity_tag< 1 > Arity;
const result_type &
operator()(const Point_3& p) const
{
return p.rep().z();
}
const result_type &
operator()(const Vector_3& v) const
{
return v.rep().z();
}
};
template <typename K>
class Compute_dx_2 : public Has_qrt
{
typedef typename K::FT FT;
typedef typename K::Direction_2 Direction_2;
public:
typedef FT result_type;
typedef Arity_tag< 1 > Arity;
const result_type &
operator()(const Direction_2& d) const
{
return d.rep().dx();
}
};
template <typename K>
class Compute_dx_3 : public Has_qrt
{
typedef typename K::FT FT;
typedef typename K::Direction_3 Direction_3;
public:
typedef FT result_type;
typedef Arity_tag< 1 > Arity;
const result_type &
operator()(const Direction_3& d) const
{
return d.rep().dx();
}
};
template <typename K>
class Compute_dy_2 : public Has_qrt
{
typedef typename K::FT FT;
typedef typename K::Direction_2 Direction_2;
public:
typedef FT result_type;
typedef Arity_tag< 1 > Arity;
const result_type &
operator()(const Direction_2& d) const
{
return d.rep().dy();
}
};
template <typename K>
class Compute_dy_3 : public Has_qrt
{
typedef typename K::FT FT;
typedef typename K::Direction_3 Direction_3;
public:
typedef FT result_type;
typedef Arity_tag< 1 > Arity;
const result_type &
operator()(const Direction_3& d) const
{
return d.rep().dy();
}
};
template <typename K>
class Compute_dz_3 : public Has_qrt
{
typedef typename K::FT FT;
typedef typename K::Direction_3 Direction_3;
public:
typedef FT result_type;
typedef Arity_tag< 1 > Arity;
const result_type &
operator()(const Direction_3& d) const
{
return d.rep().dz();
}
};
template <typename K>
class Compute_hx_2 : public Has_qrt
{
typedef typename K::FT FT;
typedef typename K::Point_2 Point_2;
typedef typename K::Vector_2 Vector_2;
public:
typedef FT result_type;
typedef Arity_tag< 1 > Arity;
const result_type &
operator()(const Point_2& p) const
{
return p.rep().hx();
}
const result_type &
operator()(const Vector_2& v) const
{
return v.rep().hx();
}
};
template <typename K>
class Compute_hx_3 : public Has_qrt
{
typedef typename K::FT FT;
typedef typename K::Point_3 Point_3;
typedef typename K::Vector_3 Vector_3;
public:
typedef FT result_type;
typedef Arity_tag< 1 > Arity;
const result_type &
operator()(const Point_3& p) const
{
return p.rep().hx();
}
const result_type &
operator()(const Vector_3& v) const
{
return v.rep().hx();
}
};
template <typename K>
class Compute_hy_2 : public Has_qrt
{
typedef typename K::FT FT;
typedef typename K::Point_2 Point_2;
typedef typename K::Vector_2 Vector_2;
public:
typedef FT result_type;
typedef Arity_tag< 1 > Arity;
const result_type &
operator()(const Point_2& p) const
{
return p.rep().hy();
}
const result_type &
operator()(const Vector_2& v) const
{
return v.rep().hy();
}
};
template <typename K>
class Compute_hy_3 : public Has_qrt
{
typedef typename K::FT FT;
typedef typename K::Point_3 Point_3;
typedef typename K::Vector_3 Vector_3;
public:
typedef FT result_type;
typedef Arity_tag< 1 > Arity;
const result_type &
operator()(const Point_3& p) const
{
return p.rep().hy();
}
const result_type &
operator()(const Vector_3& v) const
{
return v.rep().hy();
}
};
template <typename K>
class Compute_hz_3 : public Has_qrt
{
typedef typename K::FT FT;
typedef typename K::Point_3 Point_3;
typedef typename K::Vector_3 Vector_3;
public:
typedef FT result_type;
typedef Arity_tag< 1 > Arity;
const result_type &
operator()(const Point_3& p) const
{
return p.rep().hz();
}
const result_type &
operator()(const Vector_3& v) const
{
return v.rep().hz();
}
};
template <typename K>
class Compute_hw_2 : public Has_qrt
{
typedef typename K::FT FT;
typedef typename K::Point_2 Point_2;
typedef typename K::Vector_2 Vector_2;
public:
typedef FT result_type;
typedef Arity_tag< 1 > Arity;
const result_type &
operator()(const Point_2& p) const
{
return p.rep().hw();
}
const result_type &
operator()(const Vector_2& v) const
{
return v.rep().hw();
}
};
template <typename K>
class Compute_hw_3
{
typedef typename K::FT FT;
typedef typename K::Point_3 Point_3;
typedef typename K::Vector_3 Vector_3;
public:
typedef FT result_type;
typedef Arity_tag< 1 > Arity;
result_type
operator()(const Point_3& p) const
{
return p.rep().hw();
}
result_type
operator()(const Vector_3& v) const
{
return v.rep().hw();
}
};
template <typename K>
class Compute_xmin_2 : public Has_qrt
{
typedef typename K::FT FT;
typedef typename K::Iso_rectangle_2 Iso_rectangle_2;
public:
typedef FT result_type;
typedef Arity_tag< 1 > Arity;
const result_type &
operator()(const Iso_rectangle_2& r) const
{
return r.min().x();
}
};
template <typename K>
class Compute_xmax_2 : public Has_qrt
{
typedef typename K::FT FT;
typedef typename K::Iso_rectangle_2 Iso_rectangle_2;
public:
typedef FT result_type;
typedef Arity_tag< 1 > Arity;
const result_type &
operator()(const Iso_rectangle_2& r) const
{
return r.max().x();
}
};
template <typename K>
class Compute_ymin_2 : public Has_qrt
{
typedef typename K::FT FT;
typedef typename K::Iso_rectangle_2 Iso_rectangle_2;
public:
typedef FT result_type;
typedef Arity_tag< 1 > Arity;
const result_type &
operator()(const Iso_rectangle_2& r) const
{
return r.min().y();
}
};
template <typename K>
class Compute_ymax_2 : public Has_qrt
{
typedef typename K::FT FT;
typedef typename K::Iso_rectangle_2 Iso_rectangle_2;
public:
typedef FT result_type;
typedef Arity_tag< 1 > Arity;
const result_type &
operator()(const Iso_rectangle_2& r) const
{
return r.max().y();
}
};
template <typename K>
class Construct_base_vector_3
{
typedef typename K::Vector_3 Vector_3;
typedef typename K::Plane_3 Plane_3;
typedef typename K::FT FT;
typedef typename K::Construct_cross_product_vector_3
Construct_cross_product_vector_3;
typedef typename K::Construct_orthogonal_vector_3
Construct_orthogonal_vector_3;
Construct_cross_product_vector_3 cp;
Construct_orthogonal_vector_3 co;
public:
typedef Vector_3 result_type;
typedef Arity_tag< 2 > Arity;
Construct_base_vector_3() {}
Construct_base_vector_3(const Construct_cross_product_vector_3& cp_,
const Construct_orthogonal_vector_3& co_)
: cp(cp_), co(co_)
{}
result_type
operator()( const Plane_3& h, int index ) const
{
if (index == 1) {
if ( CGAL_NTS is_zero(h.a()) ) // parallel to x-axis
return Vector_3(FT(1), FT(0), FT(0));
if ( CGAL_NTS is_zero(h.b()) ) // parallel to y-axis
return Vector_3(FT(0), FT(1), FT(0));
if ( CGAL_NTS is_zero(h.c()) ) // parallel to z-axis
return Vector_3(FT(0), FT(0), FT(1));
return Vector_3(-h.b(), h.a(), FT(0));
} else {
return cp(co(h), this->operator()(h,1));
}
}
};
template <typename K>
class Construct_bbox_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Segment_2 Segment_2;
typedef typename K::Iso_rectangle_2 Iso_rectangle_2;
typedef typename K::Triangle_2 Triangle_2;
typedef typename K::Circle_2 Circle_2;
public:
typedef Bbox_2 result_type;
typedef Arity_tag< 1 > Arity;
result_type
operator()( const Point_2& p) const
{
typename K::Compute_x_2 x;// = K().compute_x_2_object();
std::pair<double,double> xp = CGAL_NTS to_interval(x(p));
std::pair<double,double> yp = CGAL_NTS to_interval(p.y());
return Bbox_2(xp.first, yp.first, xp.second, yp.second);
}
result_type
operator()( const Segment_2& s) const
{ return s.source().bbox() + s.target().bbox(); }
result_type
operator()( const Triangle_2& t) const
{
typename K::Construct_bbox_2 construct_bbox_2;
return construct_bbox_2(t.vertex(0))
+ construct_bbox_2(t.vertex(1))
+ construct_bbox_2(t.vertex(2));
}
result_type
operator()( const Iso_rectangle_2& r) const
{
typename K::Construct_bbox_2 construct_bbox_2;
return construct_bbox_2(r.min()) + construct_bbox_2(r.max());
}
result_type
operator()( const Circle_2& c) const
{
typename K::Construct_bbox_2 construct_bbox_2;
Bbox_2 b = construct_bbox_2(c.center());
Interval_nt<> x (b.xmin(), b.xmax());
Interval_nt<> y (b.ymin(), b.ymax());
Interval_nt<> sqr = CGAL_NTS to_interval(c.squared_radius());
Interval_nt<> r = CGAL::sqrt(sqr);
Interval_nt<> minx = x-r;
Interval_nt<> maxx = x+r;
Interval_nt<> miny = y-r;
Interval_nt<> maxy = y+r;
return Bbox_2(minx.inf(), miny.inf(), maxx.sup(), maxy.sup());
}
};
template <typename K>
class Construct_bisector_2
{
typedef typename K::FT FT;
typedef typename K::Point_2 Point_2;
typedef typename K::Line_2 Line_2;
public:
typedef Line_2 result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()(const Point_2& p, const Point_2& q) const
{
FT a, b, c;
bisector_of_pointsC2(p.x(), p.y(), q.x(), q.y(), a, b, c);
return Line_2(a, b, c);
}
result_type
operator()(const Line_2& p, const Line_2& q) const
{
FT a, b, c;
bisector_of_linesC2(p.a(), p.b(), p.c(),
q.a(), q.b(), q.c(),
a, b, c);
return Line_2(a, b, c);
}
};
template <typename K>
class Construct_bisector_3
{
typedef typename K::FT FT;
typedef typename K::Point_3 Point_3;
typedef typename K::Plane_3 Plane_3;
public:
typedef Plane_3 result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()(const Point_3& p, const Point_3& q) const
{
FT a, b, c, d;
bisector_of_pointsC3(p.x(), p.y(), p.z(),
q.x(), q.y(), q.z(),
a, b, c, d);
return Plane_3(a, b, c, d);
}
result_type
operator()(const Plane_3& p, const Plane_3& q) const
{
FT a, b, c, d;
bisector_of_planesC3(p.a(), p.b(), p.c(), p.d(),
q.a(), q.b(), q.c(), q.d(),
a, b, c, d);
return Plane_3(a, b, c, d);
}
};
template <typename K>
class Construct_centroid_2
{
typedef typename K::FT FT;
typedef typename K::Point_2 Point_2;
typedef typename K::Triangle_2 Triangle_2;
public:
typedef Point_2 result_type;
typedef Arity_tag< 3 > Arity;
result_type
operator()(const Point_2& p, const Point_2& q, const Point_2& r) const
{
typename K::Construct_point_2 construct_point_2;
FT x, y;
centroidC2(p.x(), p.y(), q.x(), q.y(), r.x(), r.y(), x, y);
return construct_point_2(x, y);
}
result_type
operator()(const Triangle_2& t) const
{
return this->operator()(t.vertex(0), t.vertex(1), t.vertex(2));
}
result_type
operator()(const Point_2& p, const Point_2& q,
const Point_2& r, const Point_2& s) const
{
typename K::Construct_point_2 construct_point_2;
FT x, y;
centroidC2(p.x(), p.y(), q.x(), q.y(), r.x(), r.y(), s.x(), s.y(), x, y);
return construct_point_2(x, y);
}
};
template <typename K>
class Construct_centroid_3
{
typedef typename K::FT FT;
typedef typename K::Point_3 Point_3;
typedef typename K::Triangle_3 Triangle_3;
typedef typename K::Tetrahedron_3 Tetrahedron_3;
public:
typedef Point_3 result_type;
typedef Arity_tag< 3 > Arity;
result_type
operator()(const Point_3& p, const Point_3& q, const Point_3& r) const
{
typename K::Construct_point_3 construct_point_3;
FT x, y, z;
centroidC3(p.x(), p.y(), p.z(),
q.x(), q.y(), q.z(),
r.x(), r.y(), r.z(),
x, y, z);
return construct_point_3(x, y, z);
}
result_type
operator()(const Point_3& p, const Point_3& q,
const Point_3& r, const Point_3& s) const
{
typename K::Construct_point_3 construct_point_3;
FT x, y, z;
centroidC3(p.x(), p.y(), p.z(),
q.x(), q.y(), q.z(),
r.x(), r.y(), r.z(),
s.x(), s.y(), s.z(),
x, y, z);
return construct_point_3(x, y, z);
}
result_type
operator()(const Triangle_3& t) const
{
return this->operator()(t.vertex(0), t.vertex(1), t.vertex(2));
}
result_type
operator()(const Tetrahedron_3& t) const
{
return this->operator()(t.vertex(0), t.vertex(1),
t.vertex(2), t.vertex(3));
}
};
template <typename K>
class Construct_circumcenter_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Triangle_2 Triangle_2;
public:
typedef Point_2 result_type;
typedef Arity_tag< 3 > Arity;
result_type
operator()(const Point_2& p, const Point_2& q, const Point_2& r) const
{
typename K::Construct_point_2 construct_point_2;
typedef typename K::FT FT;
FT x, y;
circumcenterC2(p.x(), p.y(), q.x(), q.y(), r.x(), r.y(), x, y);
return construct_point_2(x, y);
}
result_type
operator()(const Triangle_2& t) const
{
return this->operator()(t.vertex(0), t.vertex(1), t.vertex(2));
}
};
template <typename K>
class Construct_circumcenter_3
{
typedef typename K::FT FT;
typedef typename K::Tetrahedron_3 Tetrahedron_3;
typedef typename K::Triangle_3 Triangle_3;
typedef typename K::Point_3 Point_3;
public:
typedef Point_3 result_type;
typedef Arity_tag< 4 > Arity;
Point_3
operator()(const Point_3& p, const Point_3& q, const Point_3& r) const
{
typename K::Construct_point_3 construct_point_3;
FT x, y, z;
circumcenterC3(p.x(), p.y(), p.z(),
q.x(), q.y(), q.z(),
r.x(), r.y(), r.z(),
x, y, z);
return construct_point_3(x, y, z);
}
Point_3
operator()(const Triangle_3& t) const
{
return this->operator()(t.vertex(0), t.vertex(1), t.vertex(2));
}
Point_3
operator()(const Point_3& p, const Point_3& q,
const Point_3& r, const Point_3& s) const
{
typename K::Construct_point_3 construct_point_3;
FT x, y, z;
circumcenterC3(p.x(), p.y(), p.z(),
q.x(), q.y(), q.z(),
r.x(), r.y(), r.z(),
s.x(), s.y(), s.z(),
x, y, z);
return construct_point_3(x, y, z);
}
Point_3
operator()(const Tetrahedron_3& t) const
{
return this->operator()(t.vertex(0), t.vertex(1),
t.vertex(2), t.vertex(3));
}
};
template <typename K>
class Construct_cross_product_vector_3
{
typedef typename K::Vector_3 Vector_3;
public:
typedef Vector_3 result_type;
typedef Arity_tag< 2 > Arity;
Vector_3
operator()(const Vector_3& v, const Vector_3& w) const
{
return Vector_3(v.y() * w.z() - v.z() * w.y(),
v.z() * w.x() - v.x() * w.z(),
v.x() * w.y() - v.y() * w.x());
}
};
template <typename K>
class Construct_lifted_point_3
{
typedef typename K::Point_2 Point_2;
typedef typename K::Point_3 Point_3;
typedef typename K::Plane_3 Plane_3;
typedef typename K::Construct_base_vector_3 Construct_base_vector_3;
typedef typename K::Construct_point_on_3 Construct_point_on_3;
typedef typename K::Construct_scaled_vector_3 Construct_scaled_vector_3;
typedef typename K::Construct_translated_point_3
Construct_translated_point_3;
Construct_base_vector_3 cb;
Construct_point_on_3 cp;
Construct_scaled_vector_3 cs;
Construct_translated_point_3 ct;
public:
typedef Point_3 result_type;
typedef Arity_tag< 2 > Arity;
Construct_lifted_point_3() {}
Construct_lifted_point_3(const Construct_base_vector_3& cb_,
const Construct_point_on_3& cp_,
const Construct_scaled_vector_3& cs_,
const Construct_translated_point_3& ct_)
: cb(cb_), cp(cp_), cs(cs_), ct(ct_)
{}
Point_3
operator()(const Plane_3& h, const Point_2& p) const
{
return ct(ct(cp(h), cs(cb(h,1), p.x())), cs(cb(h,2), p.y()));
}
};
template <typename K>
class Construct_direction_2
{
typedef typename K::Direction_2 Direction_2;
typedef typename Direction_2::Rep Rep;
typedef typename K::Point_2 Point_2;
typedef typename K::Vector_2 Vector_2;
typedef typename K::Line_2 Line_2;
typedef typename K::Ray_2 Ray_2;
typedef typename K::Segment_2 Segment_2;
typedef typename K::RT RT;
public:
typedef Direction_2 result_type;
typedef Arity_tag< 1 > Arity;
Direction_2
operator()(const RT& x, const RT& y) const
{ return Rep(x, y); }
Direction_2
operator()(const Vector_2& v) const
{
return Rep(v.x(),v.y()); }
Direction_2
operator()(const Line_2& l) const
{ return Rep(l.b(), -l.a()); }
Direction_2
operator()(const Ray_2& r) const
{
typename K::Construct_direction_2 construct_direction;
return construct_direction(r.source(), r.second_point());
}
Direction_2
operator()(const Segment_2& s) const
{
typename K::Construct_direction_2 construct_direction;
return construct_direction( s.source(), s.target());
}
Direction_2
operator()(const Point_2& p, const Point_2& q) const
{
return Rep(q.x() - p.x(), q.y() - p.y());
}
};
template <typename K>
class Construct_direction_3
{
typedef typename K::Direction_3 Direction_3;
typedef typename K::Vector_3 Vector_3;
typedef typename K::Line_3 Line_3;
typedef typename K::Ray_3 Ray_3;
typedef typename K::Segment_3 Segment_3;
typedef typename K::RT RT;
typedef typename Direction_3::Rep Rep;
public:
typedef Direction_3 result_type;
typedef Arity_tag< 1 > Arity;
#ifndef CGAL_NO_DEPRECATED_CODE
Direction_3
operator()(const RT& x, const RT& y, const RT& z) const
{ return Rep(x, y, z); }
#endif // CGAL_NO_DEPRECATED_CODE
Direction_3
operator()(const Vector_3& v) const
{ return Rep(v); }
Direction_3
operator()(const Line_3& l) const
{ return Rep(l); }
Direction_3
operator()(const Ray_3& r) const
{ return Rep(r); }
Direction_3
operator()(const Segment_3& s) const
{ return Rep(s); }
};
template <typename K>
class Construct_iso_rectangle_2
{
typedef typename K::RT RT;
typedef typename K::FT FT;
typedef typename K::Point_2 Point_2;
typedef typename K::Iso_rectangle_2 Iso_rectangle_2;
typedef typename Iso_rectangle_2::Rep Rep;
public:
typedef Iso_rectangle_2 result_type;
typedef Arity_tag< 2 > Arity;
Iso_rectangle_2
operator()(const Point_2& p, const Point_2& q, int) const
{
// I have to remove the assertions, because of Cartesian_converter.
// CGAL_kernel_assertion(p.x()<=q.x());
// CGAL_kernel_assertion(p.y()<=q.y());
return Rep(p, q, 0);
}
Iso_rectangle_2
operator()(const Point_2& p, const Point_2& q) const
{
FT minx, maxx, miny, maxy;
if (p.x() < q.x()) { minx = p.x(); maxx = q.x(); }
else { minx = q.x(); maxx = p.x(); }
if (p.y() < q.y()) { miny = p.y(); maxy = q.y(); }
else { miny = q.y(); maxy = p.y(); }
return Rep(Point_2(minx, miny),
Point_2(maxx, maxy), 0);
}
Iso_rectangle_2
operator()(const Point_2 &left, const Point_2 &right,
const Point_2 &bottom, const Point_2 &top) const
{
CGAL_kernel_assertion_code(typename K::Less_x_2 less_x;)
CGAL_kernel_assertion_code(typename K::Less_y_2 less_y;)
CGAL_kernel_assertion(!less_x(right, left));
CGAL_kernel_assertion(!less_y(top, bottom));
return Rep(Point_2(left.x(), bottom.y()),
Point_2(right.x(), top.y()), 0);
}
Iso_rectangle_2
operator()(const RT& min_hx, const RT& min_hy,
const RT& max_hx, const RT& max_hy) const
{
CGAL_kernel_precondition(min_hx <= max_hx);
CGAL_kernel_precondition(min_hy <= max_hy);
return Rep(Point_2(min_hx, min_hy),
Point_2(max_hx, max_hy), 0);
}
Iso_rectangle_2
operator()(const RT& min_hx, const RT& min_hy,
const RT& max_hx, const RT& max_hy, const RT& hw) const
{
if (hw == 1)
return Rep(Point_2(min_hx, min_hy),
Point_2(max_hx, max_hy), 0);
return Rep(Point_2(min_hx/hw, min_hy/hw),
Point_2(max_hx/hw, max_hy/hw), 0);
}
};
template <typename K>
class Construct_line_2
{
typedef typename K::RT RT;
typedef typename K::FT FT;
typedef typename K::Point_2 Point_2;
typedef typename K::Direction_2 Direction_2;
typedef typename K::Vector_2 Vector_2;
typedef typename K::Segment_2 Segment_2;
typedef typename K::Ray_2 Ray_2;
typedef typename K::Line_2 Line_2;
typedef typename Line_2::Rep Rep;
typedef typename K::Construct_point_on_2 Construct_point_on_2;
Construct_point_on_2 c;
public:
typedef Line_2 result_type;
typedef Arity_tag< 2 > Arity;
Construct_line_2() {}
Construct_line_2(const Construct_point_on_2& c_) : c(c_) {}
Line_2
operator()(const RT& a, const RT& b, const RT& cc) const
{ return Rep(a, b, cc); }
Line_2
operator()(const Point_2& p, const Point_2& q) const
{
FT a, b, cc;
line_from_pointsC2(p.x(), p.y(), q.x(), q.y(), a, b, cc);
return Rep(a, b, cc);
}
Line_2
operator()(const Point_2& p, const Direction_2& d) const
{
FT a, b, cc;
line_from_point_directionC2(p.x(), p.y(), d.dx(), d.dy(), a, b, cc);
return Rep(a, b, cc);
}
Line_2
operator()(const Point_2& p, const Vector_2& v) const
{
FT a, b, cc;
line_from_point_directionC2(p.x(), p.y(), v.x(), v.y(), a, b, cc);
return Rep(a, b, cc);
}
Line_2
operator()(const Segment_2& s) const
{ return this->operator()(c(s, 0), c(s, 1)); }
Line_2
operator()(const Ray_2& r) const
{ return this->operator()(c(r, 0), c(r, 1)); }
};
template <typename K>
class Construct_line_3
{
typedef typename K::Point_3 Point_3;
typedef typename K::Direction_3 Direction_3;
typedef typename K::Segment_3 Segment_3;
typedef typename K::Ray_3 Ray_3;
typedef typename K::Line_3 Line_3;
typedef typename K::Vector_3 Vector_3;
typedef typename K::Construct_vector_3 Construct_vector_3;
typedef typename K::Construct_direction_3 Construct_direction_3;
typedef typename K::Construct_point_on_3 Construct_point_on_3;
typedef typename Line_3::Rep Rep;
Construct_vector_3 cv;
Construct_point_on_3 cp;
public:
typedef Line_3 result_type;
typedef Arity_tag< 2 > Arity;
Construct_line_3() {}
Construct_line_3(const Construct_vector_3& cv_,
const Construct_point_on_3& cp_)
: cv(cv_), cp(cp_)
{}
Line_3
operator()(const Point_3& p, const Point_3& q) const
{ return Rep(p, cv(p, q)); }
Line_3
operator()(const Point_3& p, const Direction_3& d) const
{ return operator()(p, cv(d.dx(), d.dy(), d.dz())); }
Line_3
operator()(const Point_3& p, const Vector_3& v) const
{ return Rep(p, v); }
Line_3
operator()(const Segment_3& s) const
{ return Rep(cp(s,0), cv(cp(s,0), cp(s,1))); }
Line_3
operator()(const Ray_3& r) const
{ return Rep(cp(r,0), cv(cp(r,0), cp(r,1))); }
};
template <typename K>
class Construct_midpoint_2
{
typedef typename K::FT FT;
typedef typename K::Point_2 Point_2;
public:
typedef Point_2 result_type;
typedef Arity_tag< 2 > Arity;
Point_2
operator()(const Point_2& p, const Point_2& q) const
{
typename K::Construct_point_2 construct_point_2;
FT x, y;
midpointC2(p.x(), p.y(), q.x(), q.y(), x, y);
return construct_point_2(x, y);
}
};
template <typename K>
class Construct_midpoint_3
{
typedef typename K::FT FT;
typedef typename K::Point_3 Point_3;
public:
typedef Point_3 result_type;
typedef Arity_tag< 2 > Arity;
Point_3
operator()(const Point_3& p, const Point_3& q) const
{
typename K::Construct_point_3 construct_point_3;
FT x, y, z;
midpointC3(p.x(), p.y(), p.z(), q.x(), q.y(), q.z(), x, y, z);
return construct_point_3(x, y, z);
}
};
template <typename K>
class Construct_opposite_vector_2
{
typedef typename K::Vector_2 Vector_2;
public:
typedef Vector_2 result_type;
typedef Arity_tag< 1 > Arity;
Vector_2
operator()( const Vector_2& v) const
{ return Vector_2(-v.x(), -v.y()); }
};
template <typename K>
class Construct_difference_of_vectors_2
{
typedef typename K::Vector_2 Vector_2;
public:
typedef Vector_2 result_type;
typedef Arity_tag< 2 > Arity;
Vector_2
operator()( const Vector_2& v, const Vector_2& w) const
{ return Vector_2(v.x()-w.x(), v.y()-w.y()); }
};
template <typename K>
class Construct_difference_of_vectors_3
{
typedef typename K::Vector_3 Vector_3;
public:
typedef Vector_3 result_type;
typedef Arity_tag< 2 > Arity;
Vector_3
operator()( const Vector_3& v, const Vector_3& w) const
{ return Vector_3(v.x()-w.x(), v.y()-w.y(), v.z()-w.z()); }
};
template <typename K>
class Construct_sum_of_vectors_2
{
typedef typename K::Vector_2 Vector_2;
public:
typedef Vector_2 result_type;
typedef Arity_tag< 2 > Arity;
Vector_2
operator()( const Vector_2& v, const Vector_2& w) const
{ return Vector_2(v.x()+w.x(), v.y()+w.y()); }
};
template <typename K>
class Construct_sum_of_vectors_3
{
typedef typename K::Vector_3 Vector_3;
public:
typedef Vector_3 result_type;
typedef Arity_tag< 2 > Arity;
Vector_3
operator()( const Vector_3& v, const Vector_3& w) const
{ return Vector_3(v.x()+w.x(), v.y()+w.y(), v.z()+w.z()); }
};
template <typename K>
class Construct_opposite_vector_3
{
typedef typename K::Vector_3 Vector_3;
public:
typedef Vector_3 result_type;
typedef Arity_tag< 1 > Arity;
Vector_3
operator()( const Vector_3& v) const
{ return Vector_3(-v.x(), -v.y(), -v.z()); }
};
template <typename K>
class Construct_orthogonal_vector_3
{
typedef typename K::FT FT;
typedef typename K::Point_3 Point_3;
typedef typename K::Vector_3 Vector_3;
typedef typename K::Plane_3 Plane_3;
public:
typedef Vector_3 result_type;
typedef Arity_tag< 1 > Arity;
Vector_3
operator()( const Plane_3& p ) const
{ return Vector_3(p.a(), p.b(), p.c()); }
Vector_3
operator()( const Point_3& p, const Point_3& q, const Point_3& r ) const
{
FT rpx = p.x()-r.x();
FT rpy = p.y()-r.y();
FT rpz = p.z()-r.z();
FT rqx = q.x()-r.x();
FT rqy = q.y()-r.y();
FT rqz = q.z()-r.z();
// Cross product rp * rq
FT vx = rpy*rqz - rqy*rpz;
FT vy = rpz*rqx - rqz*rpx;
FT vz = rpx*rqy - rqx*rpy;
typename K::Construct_vector_3 construct_vector;
return construct_vector(vx, vy, vz);
}
};
template <typename K>
class Construct_perpendicular_vector_2
{
typedef typename K::Vector_2 Vector_2;
public:
typedef Vector_2 result_type;
typedef Arity_tag< 2 > Arity;
Vector_2
operator()( const Vector_2& v, Orientation o) const
{
CGAL_kernel_precondition( o != COLLINEAR );
if (o == COUNTERCLOCKWISE)
return K().construct_vector_2_object()(-v.y(), v.x());
else
return K().construct_vector_2_object()(v.y(), -v.x());
}
};
template <typename K>
class Construct_perpendicular_direction_2
{
typedef typename K::Direction_2 Direction_2;
public:
typedef Direction_2 result_type;
typedef Arity_tag< 2 > Arity;
Direction_2
operator()( const Direction_2& d, Orientation o) const
{
CGAL_kernel_precondition( o != COLLINEAR );
if (o == COUNTERCLOCKWISE)
return K().construct_direction_2_object()(-d.dy(), d.dx());
else
return K().construct_direction_2_object()(d.dy(), -d.dx());
}
};
template <typename K>
class Construct_perpendicular_line_2
{
typedef typename K::Line_2 Line_2;
typedef typename K::Point_2 Point_2;
public:
typedef Line_2 result_type;
typedef Arity_tag< 2 > Arity;
Line_2
operator()( const Line_2& l, const Point_2& p) const
{
typename K::FT fta, ftb, ftc;
perpendicular_through_pointC2(l.a(), l.b(), p.x(), p.y(), fta, ftb, ftc);
return Line_2(fta, ftb, ftc);
}
};
template <typename K>
class Construct_point_2
{
typedef typename K::RT RT;
typedef typename K::Point_2 Point_2;
typedef typename K::Line_2 Line_2;
typedef typename Point_2::Rep Rep;
public:
typedef Point_2 result_type;
typedef Arity_tag< 1 > Arity;
Point_2
operator()(Origin o) const
{ return Rep(o); }
Point_2
operator()(const RT& x, const RT& y) const
{ return Rep(x, y); }
Point_2
operator()(const RT& x, const RT& y, const RT& w) const
{ return Rep(x, y, w); }
Point_2
operator()(const Line_2& l) const
{
typename K::Construct_point_2 construct_point_2;
typename K::FT x, y;
line_get_pointC2(l.a(), l.b(), l.c(), 0, x, y);
return construct_point_2(x,y);
}
Point_2
operator()(const Line_2& l, int i) const
{
typename K::Construct_point_2 construct_point_2;
typename K::FT x, y;
line_get_pointC2(l.a(), l.b(), l.c(), i, x, y);
return construct_point_2(x,y);
}
};
template <typename K>
class Construct_projected_point_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Line_2 Line_2;
public:
typedef Point_2 result_type;
typedef Arity_tag< 2 > Arity;
Point_2
operator()( const Line_2& l, const Point_2& p ) const
{
typename K::FT x, y;
typename K::Construct_point_2 construct_point_2;
line_project_pointC2(l.a(), l.b(), l.c(), p.x(), p.y(), x, y);
return construct_point_2(x, y);
}
};
template <typename K>
class Construct_projected_point_3
{
typedef typename K::Point_3 Point_3;
typedef typename K::Plane_3 Plane_3;
typedef typename K::Line_3 Line_3;
typedef typename K::FT FT;
public:
typedef Point_3 result_type;
typedef Arity_tag< 2 > Arity;
Point_3
operator()( const Line_3& l, const Point_3& p ) const
{
// projects p on the line l
FT lpx = l.point().x();
FT lpy = l.point().y();
FT lpz = l.point().z();
FT ldx = l.direction().dx();
FT ldy = l.direction().dy();
FT ldz = l.direction().dz();
FT dpx = p.x()-lpx;
FT dpy = p.y()-lpy;
FT dpz = p.z()-lpz;
FT lambda = (ldx*dpx+ldy*dpy+ldz*dpz) / (ldx*ldx+ldy*ldy+ldz*ldz);
return Point_3(lpx + lambda * ldx,
lpy + lambda * ldy,
lpz + lambda * ldz);
}
Point_3
operator()( const Plane_3& h, const Point_3& p ) const
{ return h.rep().projection(p); }
};
template <typename K>
class Construct_scaled_vector_2
{
typedef typename K::FT FT;
typedef typename K::Vector_2 Vector_2;
public:
typedef Vector_2 result_type;
typedef Arity_tag< 2 > Arity;
Vector_2
operator()( const Vector_2& v, const FT& c) const
{
return Vector_2(c * v.x(), c * v.y());
}
};
template <typename K>
class Construct_divided_vector_2
{
typedef typename K::FT FT;
typedef typename K::Vector_2 Vector_2;
public:
typedef Vector_2 result_type;
typedef Arity_tag< 2 > Arity;
Vector_2
operator()( const Vector_2& v, const FT& c) const
{
return Vector_2(v.x()/c, v.y()/c);
}
};
template <typename K>
class Construct_divided_vector_3
{
typedef typename K::FT FT;
typedef typename K::Vector_3 Vector_3;
public:
typedef Vector_3 result_type;
typedef Arity_tag< 2 > Arity;
Vector_3
operator()( const Vector_3& v, const FT& c) const
{
return Vector_3(v.x()/c, v.y()/c, v.z()/c);
}
};
template <typename K>
class Construct_scaled_vector_3
{
typedef typename K::FT FT;
typedef typename K::Vector_3 Vector_3;
public:
typedef Vector_3 result_type;
typedef Arity_tag< 2 > Arity;
Vector_3
operator()( const Vector_3& w, const FT& c) const
{
return Vector_3(c * w.x(), c * w.y(), c * w.z());
}
};
template <typename K>
class Construct_translated_point_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Vector_2 Vector_2;
public:
typedef Point_2 result_type;
typedef Arity_tag< 2 > Arity;
Point_2
operator()( const Point_2& p, const Vector_2& v) const
{
typename K::Construct_point_2 construct_point_2;
return construct_point_2(p.x() + v.x(), p.y() + v.y());
}
Point_2
operator()( const Origin& , const Vector_2& v) const
{
typename K::Construct_point_2 construct_point_2;
return construct_point_2(v.x(), v.y());
}
};
template <typename K>
class Construct_translated_point_3
{
typedef typename K::Point_3 Point_3;
typedef typename K::Vector_3 Vector_3;
public:
typedef Point_3 result_type;
typedef Arity_tag< 2 > Arity;
Point_3
operator()( const Point_3& p, const Vector_3& v) const
{
typename K::Construct_point_3 construct_point_3;
return construct_point_3(p.x() + v.x(), p.y() + v.y(), p.z() + v.z());
}
Point_3
operator()( const Origin& , const Vector_3& v) const
{
typename K::Construct_point_3 construct_point_3;
return construct_point_3(v.x(), v.y(), v.z());
}
};
template <typename K>
class Construct_vector_2
{
typedef typename K::RT RT;
typedef typename K::FT FT;
typedef typename K::Segment_2 Segment_2;
typedef typename K::Ray_2 Ray_2;
typedef typename K::Line_2 Line_2;
typedef typename K::Vector_2 Vector_2;
typedef typename K::Point_2 Point_2;
typedef typename K::Direction_2 Direction_2;
typedef typename Vector_2::Rep Rep;
public:
typedef Vector_2 result_type;
typedef Arity_tag< 2 > Arity;
Vector_2
operator()( const Point_2& p, const Point_2& q) const
{ return Rep(q.x() - p.x(), q.y() - p.y()); }
Vector_2
operator()( const Origin&, const Point_2& q) const
{ return Rep(q.x(), q.y()); }
Vector_2
operator()( const Point_2& p, const Origin& ) const
{ return Rep(-p.x(), -p.y()); }
Vector_2
operator()( const Direction_2& d ) const
{ return Rep(d.dx(), d.dy()); }
Vector_2
operator()( const Segment_2& s) const
{ return s.to_vector(); }
Vector_2
operator()( const Ray_2& r) const
{ return r.to_vector(); }
Vector_2
operator()( const Line_2& l) const
{ return Vector_2(l.b(), -l.a()); }
Vector_2
operator()( Null_vector) const
{ return Rep(FT(0), FT(0)); }
Vector_2
operator()( const RT& x, const RT& y) const
{ return Rep(x, y); }
Vector_2
operator()( const RT& x, const RT& y, const RT& w) const
{ return Rep(x, y, w); }
};
template <typename K>
class Construct_vector_3
{
typedef typename K::RT RT;
typedef typename K::FT FT;
typedef typename K::Segment_3 Segment_3;
typedef typename K::Direction_3 Direction_3;
typedef typename K::Ray_3 Ray_3;
typedef typename K::Line_3 Line_3;
typedef typename K::Vector_3 Vector_3;
typedef typename K::Point_3 Point_3;
typedef typename Vector_3::Rep Rep;
public:
typedef Vector_3 result_type;
typedef Arity_tag< 2 > Arity;
Vector_3
operator()( const Point_3& p, const Point_3& q) const
{
return Rep(q.x() - p.x(), q.y() - p.y(), q.z() - p.z());
}
Vector_3
operator()( const Origin&, const Point_3& q) const
{
return Rep(q.x(), q.y(), q.z());
}
Vector_3
operator()( const Point_3& p, const Origin&) const
{
return Rep(- p.x(), - p.y(), - p.z());
}
Vector_3
operator()( const Direction_3& d) const
{ return d.rep().to_vector(); }
Vector_3
operator()( const Segment_3& s) const
{ return s.rep().to_vector(); }
Vector_3
operator()( const Ray_3& r) const
{ return r.rep().to_vector(); }
Vector_3
operator()( const Line_3& l) const
{ return l.rep().to_vector(); }
Vector_3
operator()( const Null_vector&) const
{ return Rep(FT(0), FT(0), FT(0)); }
// #ifndef CGAL_NO_DEPRECATED_CODE
Vector_3
operator()( const RT& x, const RT& y, const RT& z) const
{ return Rep(x, y, z); }
Vector_3
operator()( const RT& x, const RT& y, const RT& z, const RT& w) const
{ return Rep(x, y, z, w); }
// #endif // CGAL_NO_DEPRECATED_CODE
};
template <typename K>
class Construct_vertex_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Segment_2 Segment_2;
typedef typename K::Iso_rectangle_2 Iso_rectangle_2;
typedef typename K::Triangle_2 Triangle_2;
public:
typedef Point_2 result_type;
typedef Arity_tag< 2 > Arity;
const Point_2 &
operator()( const Segment_2& s, int i) const
{ return s.vertex(i); }
const Point_2 &
operator()( const Triangle_2& t, int i) const
{ return t.rep().vertex(i); }
Point_2
operator()( const Iso_rectangle_2& r, int i) const
{
switch (i%4) {
case 0: return r.min();
case 1: return Point_2(r.xmax(), r.ymin());
case 2: return r.max();
default: return Point_2(r.xmin(), r.ymax());
}
}
};
} //namespace CartesianKernelFunctors
#ifndef CGAL_CFG_DONT_OVERLOAD_TOO_MUCH
template < typename K>
struct Qualified_result_of<CartesianKernelFunctors::Construct_vertex_2<K>, typename K::Segment_2, int >
{
typedef typename K::Point_2 const & type;
};
template < typename K>
struct Qualified_result_of<CartesianKernelFunctors::Construct_vertex_2<K>, typename K::Triangle_2, int >
{
typedef typename K::Point_2 const & type;
};
#endif
// For Iso_rectangle the non specialized template will do the right thing, namely return a copy of a point
namespace CartesianKernelFunctors {
template <typename K>
class Coplanar_orientation_3
{
typedef typename K::Point_3 Point_3;
#ifdef CGAL_kernel_exactness_preconditions
typedef typename K::Coplanar_3 Coplanar_3;
typedef typename K::Collinear_3 Collinear_3;
Coplanar_3 cp;
Collinear_3 cl;
#endif // CGAL_kernel_exactness_preconditions
public:
typedef typename K::Orientation result_type;
typedef Arity_tag< 4 > Arity;
#ifdef CGAL_kernel_exactness_preconditions
Coplanar_orientation_3() {}
Coplanar_orientation_3(const Coplanar_3& cp_, const Collinear_3& cl_)
: cp(cp_), cl(cl_)
{}
#endif // CGAL_kernel_exactness_preconditions
result_type
operator()(const Point_3& p, const Point_3& q, const Point_3& r) const
{
return coplanar_orientationC3(p.x(), p.y(), p.z(),
q.x(), q.y(), q.z(),
r.x(), r.y(), r.z());
}
result_type
operator()( const Point_3& p, const Point_3& q,
const Point_3& r, const Point_3& s) const
{
// p,q,r,s supposed to be coplanar
// p,q,r supposed to be non collinear
// tests whether s is on the same side of p,q as r
// returns :
// COLLINEAR if pqr collinear
// POSITIVE if qrp and qrs have the same orientation
// NEGATIVE if qrp and qrs have opposite orientations
CGAL_kernel_exactness_precondition( ! cl(p, q, r) );
CGAL_kernel_exactness_precondition( cp(p, q, r, s) );
return coplanar_orientationC3(p.x(), p.y(), p.z(),
q.x(), q.y(), q.z(),
r.x(), r.y(), r.z(),
s.x(), s.y(), s.z());
}
};
template <typename K>
class Coplanar_side_of_bounded_circle_3
{
typedef typename K::Point_3 Point_3;
#ifdef CGAL_kernel_exactness_preconditions
typedef typename K::Coplanar_3 Coplanar_3;
typedef typename K::Collinear_3 Collinear_3;
Coplanar_3 cp;
Collinear_3 cl;
#endif // CGAL_kernel_exactness_preconditions
public:
typedef typename K::Bounded_side result_type;
typedef Arity_tag< 4 > Arity;
#ifdef CGAL_kernel_exactness_preconditions
Coplanar_side_of_bounded_circle_3() {}
Coplanar_side_of_bounded_circle_3(const Coplanar_3& cp_,
const Collinear_3& cl_)
: cp(cp_), cl(cl_)
{}
#endif // CGAL_kernel_exactness_preconditions
result_type
operator()( const Point_3& p, const Point_3& q,
const Point_3& r, const Point_3& t) const
{
// p,q,r,t are supposed to be coplanar.
// p,q,r determine an orientation of this plane (not collinear).
// returns the equivalent of side_of_bounded_circle(p,q,r,t)
// in this plane
CGAL_kernel_exactness_precondition( cp(p,q,r,t) );
CGAL_kernel_exactness_precondition( !cl(p,q,r) );
return coplanar_side_of_bounded_circleC3(p.x(), p.y(), p.z(),
q.x(), q.y(), q.z(),
r.x(), r.y(), r.z(),
t.x(), t.y(), t.z());
}
};
template <typename K>
class Equal_xy_3
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()( const Point_3& p, const Point_3& q) const
{
return p.x() == q.x() && p.y() == q.y();
}
};
template <typename K>
class Equal_x_2
{
typedef typename K::Point_2 Point_2;
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()( const Point_2& p, const Point_2& q) const
{ return p.x() == q.x(); }
};
template <typename K>
class Equal_x_3
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()( const Point_3& p, const Point_3& q) const
{ return p.x() == q.x(); }
};
template <typename K>
class Equal_y_2
{
typedef typename K::Point_2 Point_2;
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()( const Point_2& p, const Point_2& q) const
{ return p.y() == q.y(); }
};
template <typename K>
class Equal_y_3
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()( const Point_3& p, const Point_3& q) const
{ return p.y() == q.y(); }
};
template <typename K>
class Equal_z_3
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()( const Point_3& p, const Point_3& q) const
{ return p.z() == q.z(); }
};
template <typename K>
class Has_on_3
{
typedef typename K::FT FT;
typedef typename K::Point_3 Point_3;
typedef typename K::Vector_3 Vector_3;
typedef typename K::Line_3 Line_3;
typedef typename K::Ray_3 Ray_3;
typedef typename K::Segment_3 Segment_3;
typedef typename K::Plane_3 Plane_3;
typedef typename K::Triangle_3 Triangle_3;
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()( const Line_3& l, const Point_3& p) const
{ return l.rep().has_on(p); }
result_type
operator()( const Ray_3& r, const Point_3& p) const
{ return r.rep().has_on(p); }
result_type
operator()( const Segment_3& s, const Point_3& p) const
{ return s.has_on(p); }
result_type
operator()( const Plane_3& pl, const Point_3& p) const
{ return pl.rep().has_on(p); }
result_type
operator()( const Plane_3& pl, const Line_3& l) const
{ return pl.rep().has_on(l); }
result_type
operator()( const Triangle_3& t, const Point_3& p) const
{
Point_3 o = t.vertex(0) + t.supporting_plane().orthogonal_vector();
Vector_3 v0 = t.vertex(0)-o,
v1 = t.vertex(1)-o,
v2 = t.vertex(2)-o;
FT alpha, beta, gamma;
solve(v0, v1, v2, p-o, alpha, beta, gamma);
return (alpha >= FT(0)) && (beta >= FT(0)) && (gamma >= FT(0))
&& ((alpha+beta+gamma == FT(1)));
}
};
template <typename K>
class Less_distance_to_point_2
{
typedef typename K::Point_2 Point_2;
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 3 > Arity;
result_type
operator()(const Point_2& p, const Point_2& q, const Point_2& r) const
{
return has_smaller_dist_to_pointC2(p.x(), p.y(),
q.x(), q.y(),
r.x(), r.y());
}
};
template <typename K>
class Less_distance_to_point_3
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 3 > Arity;
result_type
operator()(const Point_3& p, const Point_3& q, const Point_3& r) const
{
return has_smaller_dist_to_pointC3(p.x(), p.y(), p.z(),
q.x(), q.y(), q.z(),
r.x(), r.y(), r.z());
}
};
// TODO ...
template <typename K>
class Less_signed_distance_to_line_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Line_2 Line_2;
typedef typename K::Equal_2 Equal_2;
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 4 > Arity;
result_type
operator()(const Point_2& a, const Point_2& b,
const Point_2& c, const Point_2& d) const
{
CGAL_kernel_precondition_code(Equal_2 equal;)
CGAL_kernel_precondition(! equal(a,b));
return cmp_signed_dist_to_lineC2( a.x(), a.y(),
b.x(), b.y(),
c.x(), c.y(),
d.x(), d.y()) == SMALLER;
}
result_type
operator()(const Line_2& l, const Point_2& p, const Point_2& q) const
{
return has_smaller_signed_dist_to_directionC2(l.a(), l.b(),
p.x(), p.y(),
q.x(), q.y());
}
};
template <typename K>
class Less_signed_distance_to_plane_3
{
typedef typename K::Point_3 Point_3;
typedef typename K::Plane_3 Plane_3;
typedef typename K::Collinear_3 Collinear_3;
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 3 > Arity;
result_type
operator()( const Plane_3& h, const Point_3& p, const Point_3& q) const
{
return has_smaller_signed_dist_to_directionC3(h.a(), h.b(), h.c(),
p.x(), p.y(), p.z(),
q.x(), q.y(), q.z());
}
result_type
operator()( const Point_3& hp, const Point_3& hq, const Point_3& hr,
const Point_3& p, const Point_3& q) const
{
CGAL_kernel_precondition_code(Collinear_3 collinear_3;)
CGAL_kernel_precondition(! collinear_3(hp, hq, hr));
return has_smaller_signed_dist_to_planeC3(hp.x(), hp.y(), hp.z(),
hq.x(), hq.y(), hq.z(),
hr.x(), hr.y(), hr.z(),
p.x(), p.y(), p.z(),
q.x(), q.y(), q.z());;
}
};
template <typename K>
class Less_xyz_3
{
typedef typename K::Point_3 Point_3;
typedef typename K::Compare_xyz_3 Compare_xyz_3;
Compare_xyz_3 c;
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 2 > Arity;
Less_xyz_3() {}
Less_xyz_3(const Compare_xyz_3& c_) : c(c_) {}
result_type
operator()( const Point_3& p, const Point_3& q) const
{ return c(p, q) == SMALLER; }
};
template <typename K>
class Less_xy_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Compare_xy_2 Compare_xy_2;
Compare_xy_2 c;
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 2 > Arity;
Less_xy_2() {}
Less_xy_2(const Compare_xy_2& c_) : c(c_) {}
result_type
operator()( const Point_2& p, const Point_2& q) const
{ return c(p, q) == SMALLER; }
};
template <typename K>
class Less_xy_3
{
typedef typename K::Point_3 Point_3;
typedef typename K::Compare_xy_3 Compare_xy_3;
Compare_xy_3 c;
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 2 > Arity;
Less_xy_3() {}
Less_xy_3(const Compare_xy_3& c_) : c(c_) {}
result_type
operator()( const Point_3& p, const Point_3& q) const
{ return c(p, q) == SMALLER; }
};
template <typename K>
class Less_x_2
{
typedef typename K::Point_2 Point_2;
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()( const Point_2& p, const Point_2& q) const
{ return p.x() < q.x(); }
};
template <typename K>
class Less_x_3
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()( const Point_3& p, const Point_3& q) const
{ return p.x() < q.x(); }
};
template <typename K>
class Less_yx_2
{
typedef typename K::Point_2 Point_2;
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()( const Point_2& p, const Point_2& q) const
{
return compare_lexicographically_xyC2(p.y(), p.x(),
q.y(), q.x()) == SMALLER;
}
};
template <typename K>
class Less_y_2
{
typedef typename K::Point_2 Point_2;
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()( const Point_2& p, const Point_2& q) const
{ return p.y() < q.y(); }
};
template <typename K>
class Less_y_3
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()( const Point_3& p, const Point_3& q) const
{ return p.y() < q.y(); }
};
template <typename K>
class Less_z_3
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bool_type result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()( const Point_3& p, const Point_3& q) const
{ return p.z() < q.z(); }
};
template <typename K>
class Orientation_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Vector_2 Vector_2;
typedef typename K::Circle_2 Circle_2;
public:
typedef typename K::Orientation result_type;
typedef Arity_tag< 3 > Arity;
result_type
operator()(const Point_2& p, const Point_2& q, const Point_2& r) const
{
return orientationC2(p.x(), p.y(), q.x(), q.y(), r.x(), r.y());
}
result_type
operator()(const Vector_2& u, const Vector_2& v) const
{
return orientationC2(u.x(), u.y(), v.x(), v.y());
}
result_type
operator()(const Circle_2& c) const
{
return c.rep().orientation();
}
};
template <typename K>
class Orientation_3
{
typedef typename K::Point_3 Point_3;
typedef typename K::Vector_3 Vector_3;
typedef typename K::Tetrahedron_3 Tetrahedron_3;
typedef typename K::Sphere_3 Sphere_3;
public:
typedef typename K::Orientation result_type;
typedef Arity_tag< 4 > Arity;
result_type
operator()( const Point_3& p, const Point_3& q,
const Point_3& r, const Point_3& s) const
{
return orientationC3(p.x(), p.y(), p.z(),
q.x(), q.y(), q.z(),
r.x(), r.y(), r.z(),
s.x(), s.y(), s.z());
}
result_type
operator()( const Vector_3& u, const Vector_3& v, const Vector_3& w) const
{
return orientationC3(u.x(), u.y(), u.z(),
v.x(), v.y(), v.z(),
w.x(), w.y(), w.z());
}
result_type
operator()( const Tetrahedron_3& t) const
{
return t.rep().orientation();
}
result_type
operator()(const Sphere_3& s) const
{
return s.rep().orientation();
}
};
template <typename K>
class Oriented_side_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Circle_2 Circle_2;
typedef typename K::Line_2 Line_2;
typedef typename K::Triangle_2 Triangle_2;
public:
typedef typename K::Oriented_side result_type;
typedef Arity_tag< 2 > Arity;
result_type
operator()( const Circle_2& c, const Point_2& p) const
{ return Oriented_side(c.bounded_side(p) * c.orientation()); }
result_type
operator()( const Line_2& l, const Point_2& p) const
{ return side_of_oriented_lineC2(l.a(), l.b(), l.c(), p.x(), p.y()); }
result_type
operator()( const Triangle_2& t, const Point_2& p) const
{
typename K::Collinear_are_ordered_along_line_2
collinear_are_ordered_along_line;
typename K::Orientation_2 orientation;
// depends on the orientation of the vertices
typename K::Orientation
o1 = orientation(t.vertex(0), t.vertex(1), p),
o2 = orientation(t.vertex(1), t.vertex(2), p),
o3 = orientation(t.vertex(2), t.vertex(3), p),
ot = orientation(t.vertex(0), t.vertex(1), t.vertex(2));
if (o1 == ot && o2 == ot && o3 == ot) // ot cannot be COLLINEAR
return enum_cast<Oriented_side>(ot);
return
(o1 == COLLINEAR
&& collinear_are_ordered_along_line(t.vertex(0), p, t.vertex(1))) ||
(o2 == COLLINEAR
&& collinear_are_ordered_along_line(t.vertex(1), p, t.vertex(2))) ||
(o3 == COLLINEAR
&& collinear_are_ordered_along_line(t.vertex(2), p, t.vertex(3)))
? result_type(ON_ORIENTED_BOUNDARY)
: enum_cast<Oriented_side>(opposite(ot)); }
};
template <typename K>
class Side_of_bounded_circle_2
{
typedef typename K::Point_2 Point_2;
public:
typedef typename K::Bounded_side result_type;
typedef Arity_tag< 4 > Arity;
result_type
operator()( const Point_2& p, const Point_2& q, const Point_2& t) const
{
return side_of_bounded_circleC2(p.x(), p.y(),
q.x(), q.y(),
t.x(), t.y());
}
result_type
operator()( const Point_2& p, const Point_2& q,
const Point_2& r, const Point_2& t) const
{
return side_of_bounded_circleC2(p.x(), p.y(), q.x(), q.y(), r.x(), r.y(),
t.x(), t.y());
}
};
template <typename K>
class Side_of_bounded_sphere_3
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bounded_side result_type;
typedef Arity_tag< 5 > Arity;
result_type
operator()( const Point_3& p, const Point_3& q, const Point_3& test) const
{
return side_of_bounded_sphereC3(p.x(), p.y(), p.z(),
q.x(), q.y(), q.z(),
test.x(), test.y(), test.z());
}
result_type
operator()( const Point_3& p, const Point_3& q,
const Point_3& r, const Point_3& test) const
{
return side_of_bounded_sphereC3(p.x(), p.y(), p.z(),
q.x(), q.y(), q.z(),
r.x(), r.y(), r.z(),
test.x(), test.y(), test.z());
}
result_type
operator()( const Point_3& p, const Point_3& q, const Point_3& r,
const Point_3& s, const Point_3& test) const
{
return side_of_bounded_sphereC3(p.x(), p.y(), p.z(),
q.x(), q.y(), q.z(),
r.x(), r.y(), r.z(),
s.x(), s.y(), s.z(),
test.x(), test.y(), test.z());
}
};
template <typename K>
class Side_of_oriented_circle_2
{
typedef typename K::Point_2 Point_2;
public:
typedef typename K::Oriented_side result_type;
typedef Arity_tag< 4 > Arity;
result_type
operator()( const Point_2& p, const Point_2& q,
const Point_2& r, const Point_2& t) const
{
return side_of_oriented_circleC2(p.x(), p.y(),
q.x(), q.y(),
r.x(), r.y(),
t.x(), t.y());
}
};
template <typename K>
class Side_of_oriented_sphere_3
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Oriented_side result_type;
typedef Arity_tag< 5 > Arity;
result_type
operator()( const Point_3& p, const Point_3& q, const Point_3& r,
const Point_3& s, const Point_3& test) const
{
return side_of_oriented_sphereC3(p.x(), p.y(), p.z(),
q.x(), q.y(), q.z(),
r.x(), r.y(), r.z(),
s.x(), s.y(), s.z(),
test.x(), test.y(), test.z());
}
};
} // namespace CartesianKernelFunctors
CGAL_END_NAMESPACE
#endif // CGAL_CARTESIAN_FUNCTION_OBJECTS_H