cgal/Polynomial/doc_tex/Polynomial_ref/Exponent_vector.tex

145 lines
4.4 KiB
TeX

\begin{ccRefClass}{Exponent_vector}
\ccDefinition
For a given (multivariate) monomial the vector of its exponents is called the
exponent vector. The class \ccClassName\ is meant to represent
such a vector.
A vector is considered as valid, in case it represents a valid monomial.
that is, it should not contain negative exponents.
We decided to use int as the value type,
since negative exponents may appear in intermediate results.
The set of exponent vectors with elementwise
addition forms an {\em Abelian Group}.
Though this class is derived from \ccc{std::vector<int>} the comparison
is changes such that the lexicographic order starts with the last entry.
This reflects the fact that the last entry corresponds
to the last/outermost variable of a multivariate polynomial.
%\footnote{Should we add a scalar multiplication? }
\ccInclude{CGAL/Exponent_vector.h}
\ccInheritsFrom
\ccc{std::vector<int>}
\ccIsModel
\ccc{Random Access Container}\\
\ccc{Back Insertion Sequence}\\
\ccc{DefaultConstructible}\\
\ccc{Assignable}\\
\ccc{CopyConstructible}\\
\ccc{EqualityComparable}\\
\ccc{LessThanComparable}\\
\ccCreation
\ccCreationVariable{fo}
%\ccc{DefaultConstructible}\\
\ccConstructor{Exponent_vector();}
{introduces an uninitialized variable \ccVar.
}\ccGlue
%\ccc{CopyConstructible}\\
\ccConstructor{Exponent_vector(const Exponent_vector & ev_);}
{The copy constructor
}\ccGlue
% OLD CONSTRUCTORS
%\ccConstructor{Exponent_vector(size_type n);}
% {Creates a vector with \ccc{n} elements.
% }\ccGlue
%\ccConstructor{Exponent_vector(size_type n, int i);}
% {Creates a vector with \ccc{n} copies of \ccc{i}.
% }\ccGlue
%\ccConstructor{Exponent_vector(int e1);}
% {Creates a vector containing the given element.
% }\ccGlue
%\ccConstructor{Exponent_vector(int e1, int e2);}
% {Creates a vector containing the given elements.
% }\ccGlue
%\ccConstructor{Exponent_vector(int e1, int e2, int e3);}
% {Creates a vector containing the given elements.
% }\ccGlue
%\ccConstructor{Exponent_vector(int e1, int e2, int e3, int e4);}
% {Creates a vector containing the given elements.
% }\ccGlue
\ccConstructor{
template < class InputIterator >
Exponent_vector(InputIterator begin, InputIterator end);}{
Creates a vector with a copy of the given range.
\ccPrecond \ccc{InputIterator} must allow the value type \ccc{int}. \\
}\ccGlue
\ccOperations
\ccGlue
\ccFunction{bool is_valid(ev);}
{ Returns true if all entries of ev are not negative. }
\ccOperations
Group Operation:
\ccFunction{Exponent_vector operator+(const Exponent_vector &ev1);}{}\ccGlue
\ccFunction{Exponent_vector operator-(const Exponent_vector &ev1);}{}\ccGlue
\ccFunction{Exponent_vector
operator+(const Exponent_vector &ev1,
const Exponent_vector &ev2);}{
\ccPrecond ev1.size() == ev2.size()
}
\ccGlue
\ccFunction{Exponent_vector
operator-(const Exponent_vector &ev1,
const Exponent_vector &ev2);}{
\ccPrecond ev1.size() == ev2.size()
}
\ccGlue
\ccMethod{Exponent_vector
operator+=(const Exponent_vector &ev2);}{
\ccPrecond \ccVar.size() == ev2.size()
}
\ccGlue
\ccMethod{Exponent_vector
operator-=(const Exponent_vector &ev2);}{
\ccPrecond \ccVar.size() == ev2.size()
}
%\begin{ccAdvanced}
%TODO: Should we add these functions? what about operator $/$ ?
%\ccMethod{Exponent_vector operator*=(int i);}{}
%\ccGlue
%\ccFunction{Exponent_vector operator*(const Exponent_vector &ev, int i);}{}
%\ccGlue
%\ccFunction{Exponent_vector operator*(int i ,const Exponent_vector &ev);}{}
%\end{ccAdvanced}
\ccc{EqualityComparable}:
\ccFunction{bool
operator==(const Exponent_vector &ev1,
const Exponent_vector &ev2);}{}
\ccGlue
\ccFunction{bool
operator!=(const Exponent_vector &ev1,
const Exponent_vector &ev2);}{}
\ccc{LessThanComparable}:
\ccFunction{bool
operator<(const Exponent_vector &ev1,
const Exponent_vector &ev2);}{
Lexicographic compare, starting with the {\em last} variable. }
\ccGlue
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\end{ccRefClass}