cgal/Core/include/CGAL/CORE/poly/Poly.h

435 lines
15 KiB
C++

/****************************************************************************
* Core Library Version 1.7, August 2004
* Copyright (c) 1995-2004 Exact Computation Project
* All rights reserved.
*
* This file is part of CORE (http://cs.nyu.edu/exact/core/); you may
* redistribute it under the terms of the Q Public License version 1.0.
* See the file LICENSE.QPL distributed with CORE.
*
* Licensees holding a valid commercial license may use this file in
* accordance with the commercial license agreement provided with the
* software.
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*
* File: Poly.h
*
* Description: simple polynomial class
*
* REPRESENTATION:
* --Each polynomial has a nominal "degree" (this
* is an upper bound on the true degree, which
* is determined by the first non-zero coefficient).
* --coefficients are parametrized by some number type "NT".
* --coefficients are stored in the "coeff" array of
* length "degree + 1".
* CONVENTION: coeff[i] is the coefficient of X^i. So, a
* coefficient list begins with the constant term.
* --IMPORTANT CONVENTION:
* the zero polynomial has degree -1
* while nonzero constant polynomials have degree 0.
*
* FUNCTIONALITY:
* --Polynomial Ring Operations (+,-,*)
* --Power
* --Evaluation
* --Differentiation
* --Remainder, Quotient
* --GCD
* --Resultant, Discriminant (planned)
* --Polynomial Composition (planned)
* --file I/O (planned)
*
* Author: Chee Yap
* Date: May 28, 2002
*
* WWW URL: http://cs.nyu.edu/exact/
* Email: exact@cs.nyu.edu
*
* $URL$
* $Id$
***************************************************************************/
#ifndef CORE_POLY_H
#define CORE_POLY_H
#include <CGAL/CORE/BigFloat.h>
#include <CGAL/CORE/Promote.h>
#include <vector>
CORE_BEGIN_NAMESPACE
using namespace std;
class Expr;
// ==================================================
// Typedefs
// ==================================================
//typedef std::vector<Expr> VecExpr;
//typedef std::pair<Expr, Expr> Interval;
//typedef std::vector<Interval> VecInterval;
typedef std::pair<BigFloat, BigFloat> BFInterval;
// NOTE: an error condition is indicated by
// the special interval (1, 0)
typedef std::vector<BFInterval> BFVecInterval;
// ==================================================
// Polynomial Class
// ==================================================
template <class NT>
class Polynomial {
private:
//The following are used in the constructor from strings.
//For more details see the related constructor.
public:
typedef std::vector<NT> VecNT;
typedef NT coeffType;
int degree; // This is the nominal degree (an upper bound
// on the true degree)
NT * coeff; // coeff is an array of size degree+1;
// This remark holds even when degree = -1.
// Notes:
// (1) coeff[i] is the coefficient of x^i
// (2) The Zero Polynomial has degree -1
// (3) Nonzero Constant Polynomials has degree 0
// STATIC MEMBERS
// static NT ccc_; // THIS IS A TEMPORARY HACK
static int COEFF_PER_LINE; // pretty print parameters
static const char * INDENT_SPACE; // pretty print parameters
static const Polynomial<NT> & polyZero();
static const Polynomial<NT> & polyUnity();
static Polynomial polyWilkinson; // a sample polynomial
static int NT_TYPE; // NT_TYPE = 1 if NT is integer type (int,long,BigInt)
// NT_TYPE = 2 if NT is BigFloat
// NT_TYPE = 3 if NT is BigRat
// NT_TYPE = 4 if NT is Expr
// Hack? NT_TYPE is needed for root bounds, etc.
// Constructors:
Polynomial(void); // the Zero Polynomial
Polynomial(int n); // construct the Unit Polynomial of nominal deg n>=0
Polynomial(int n, const NT * coef);
Polynomial(const Polynomial &);
Polynomial(const VecNT &);
Polynomial(int n, const char* s[]);
Polynomial(const string & s, char myX='x');
Polynomial(const char* s, char myX='x');
~Polynomial();
private:
void constructX(int n, Polynomial<NT>& P);
void constructFromString(string & s, char myX='x');
int getnumber(const char* c, int i, unsigned int len, Polynomial<NT> & P);
bool isint(char c);
int getint(const char* c, int i, unsigned int len, int & n);
int matchparen(const char* cstr, int start);
int getbasicterm(string & s, Polynomial<NT> & P);
int getterm(string & s, Polynomial<NT> & P);
public:
//Returns a Polynomial corresponding to s, which is supposed to
//contain as place-holders the chars 'x' and 'y'.
Polynomial<NT> getpoly(string & s);
// Assignment:
Polynomial & operator=(const Polynomial&);
// Expand and Contract
// -- they are semi-inverses: i.e., Contract(expand(p))=p
int expand(int n); // Change the current degree to n
// Helper function for polynomial arithmetic
int contract(); // get rid of leading zeros
// Polynomial arithmetic (these are all self-modifying):
Polynomial & operator+=(const Polynomial&); // +=
Polynomial & operator-=(const Polynomial&); // -=
Polynomial & operator*=(const Polynomial&); // *=
Polynomial & operator-(); // unary minus
Polynomial & power (unsigned int n) ; // power (*this is changed!)
Polynomial & mulScalar (const NT & c); // return (*this) * (c)
Polynomial & mulXpower(int i); // If i >= 0, then this is equivalent
// to multiplying by X^i.
// If i < 0 to dividing by X^i
Polynomial pseudoRemainder (const Polynomial& B, NT& C); // C = return value
Polynomial pseudoRemainder (const Polynomial& B); // no C version
// The pseudo quotient of (*this) mod B
// is returned, but (*this) is transformed
// into the pseudo remainder. If the argument C is provided,
// Then C*(*this) = B*pseudo-quotient + pseudo-remainder.
Polynomial & negPseudoRemainder (const Polynomial& B); // negative remainder
Polynomial reduceStep (const Polynomial& B ); //helper for pseudoRemainder
// One step of pseudo remainder
// What is returned is a special polynomial C + X*M (not "C+M")
// telling us the initial constant C and
// the quotient M of C*(THIS) divided by p.
Polynomial testReduceStep(const Polynomial& A, const Polynomial& B); //helper
// Get functions
int getDegree() const; // nominal degree
int getTrueDegree() const; // true degree
NT getCoeffi(int i) const;
const NT & getLeadCoeff() const; // get TRUE leading coefficient
const NT & getTailCoeff() const; // get last non-zero coefficient
NT** getCoeffs() ; // get all coefficients
const NT& getCoeff(int i) const; // Get single coefficient of X^i
// NULL pointer if invalid i
// Set functions
bool setCoeff(int i, const NT & cc); // Make cc the coefficient of X^i
// Return FALSE if invalid i
// !! User's responsibility to
// delete the old coefficient if
// necessary !!
// Helper Functions:
/// Reverse reverses the coefficients
void reverse();
/// Negation of a polynomial (multiplication by -1)
/// Useful for Sturm
Polynomial & negate();
/// Suppressing Zero Roots
/// It amounts to dividing (*this) by X^k, so that the
/// the tail coeff is non-zero. Returns the value of k.
int makeTailCoeffNonzero();
// Evaluation Functions:
/// Polynomial evaluation where the coefficients are approximated first
/// Returns a BigFloat with error that contains the value
BigFloat evalApprox(const BigFloat& f,
const extLong& r=defRelPrec, const extLong& a=defAbsPrec) const;
/// Polynomial evaluation at a BigFloat value.
/// The returned BigFloat (with error) has the exact sign.
/// In particular, if the value is 0, we return 0.
/// @param oldMSB is any estimate of the negative log of the evaluation
BigFloat evalExactSign(const BigFloat& val, const extLong& oldMSB=54) const;
/// Polynomial evaluation that return the same type as its argument
/// Caution: The type T must be greater or equal to the type NT
/// NOTE: Eventually, we will remove this restriction by
/// introduce MaxType(NT,T) for the return type.
template <class T>
MAX_TYPE(NT, T) eval(const T&) const;
// Bounds
BigFloat CauchyUpperBound() const; // Cauchy Root Upper Bound
BigFloat CauchyLowerBound() const; // Cauchy Root Lower Bound
BigInt CauchyBound() const; // Cauchy Root Bound from Erich Kaltofen
BigInt UpperBound() const; // Another Cauchy Root Bound; an improvement over
//Erich Kaltofen
BigFloat sepBound() const; // separation bound (multiple roots allowed)
BigFloat height() const; // height return type BigFloat
BigFloat length() const; // length return type BigFloat
// Differentiation
Polynomial & differentiate() ; // self-differentiation
Polynomial & differentiate(int n) ; // multi self-differentiation
// Reductions of polynomials (NT must have gcd function)
Polynomial sqFreePart(); // Square free part of P is P/gcd(P,P'). Return gcd
Polynomial & primPart(); // Primitive Part of *this (which is changed)
//////////////////////////////////////////////////////////////////
// Resultant and discriminant
// NT & resultant() ; // resultant
// NT & discriminant() ; // discriminant
// Composition of Polynomials:
// NOT yet implemented
//////////////////////////////////////////////////////////////////
// Polynomial Dump
void dump(std::ofstream & ofs, std::string msg="",
std::string com="# ", std::string com2="# ") const; // dump to file
void dump(std::string msg="", std::string com="# ",
std::string com2="# ") const; // dump to cout
void filedump(std::ostream & os, std::string msg="", std::string com="# ",
std::string com2="# ") const; // dump workhorse (called by dump())
void mapleDump() const; // dump of maple code for Polynomial
}; //Polynomial Class
// template < class NT >
// NT Polynomial<NT>::ccc_;
// ==================================================
// Static Constants
// Does this belong here?
// ==================================================
template < class NT >
CORE_INLINE
const Polynomial<NT> & Polynomial<NT>::polyZero() {
static Polynomial<NT> zeroP;
return zeroP;
}
template < class NT >
CORE_INLINE
const Polynomial<NT> & Polynomial<NT>::polyUnity() {
static NT c[] = {1};
static Polynomial<NT> unityP(0, c);
return unityP;
}
// ==================================================
// Useful functions for Polynomial class
// ==================================================
// polynomial arithmetic:
template < class NT >
Polynomial<NT> operator+(const Polynomial<NT>&, const Polynomial<NT>&);// +
template < class NT >
Polynomial<NT> operator-(const Polynomial<NT>&, const Polynomial<NT>&);// -
template < class NT >
Polynomial<NT> operator*(const Polynomial<NT>&, const Polynomial<NT>&);// *
template < class NT >
Polynomial<NT> power(const Polynomial<NT>&, int n); // power
template < class NT >
Polynomial<NT> differentiate(const Polynomial<NT>&); // differentiate
template < class NT >
Polynomial<NT> differentiate(const Polynomial<NT>&, int n); // multi-differ.
//Content of a Polynomial
template < class NT >
NT content(const Polynomial<NT>& p);
template <class NT>
bool isDivisible(Polynomial<NT> p, Polynomial<NT> q);
// GCD of two polynomials
template < class NT >
Polynomial<NT> gcd(const Polynomial<NT>& p, const Polynomial<NT>& q);
//Resultant of two polynomials
template < class NT >
NT res( Polynomial<NT> p, Polynomial<NT> q);
//Principal Subresultant Coefficient (psc) of two polynomials
template < class NT >
NT psc(int i, Polynomial<NT> p, Polynomial<NT> q);
//Returns the polynomial which contains only the real roots
//of P which have multiplicity d
template < class NT >
Polynomial<NT> factorI(Polynomial<NT> p, int d);
// comparisons
template < class NT >
bool operator==(const Polynomial<NT>&, const Polynomial<NT>&); // ==
template < class NT >
bool operator!=(const Polynomial<NT>&, const Polynomial<NT>&); // !=
template < class NT >
bool zeroP(const Polynomial <NT>&); // =Zero Poly?
template < class NT >
bool unitP(const Polynomial <NT>&); // =Unit Poly?
// stream i/o
template < class NT >
std::ostream& operator<<(std::ostream&, const Polynomial<NT>&);
template < class NT >
std::istream& operator>>(std::istream&, Polynomial<NT>&);
// ==================================================
// Inline Functions
// ==================================================
// friend polynomial arithmetic:
template < class NT >
CORE_INLINE
Polynomial<NT> operator+(const Polynomial<NT>& p1,
const Polynomial<NT>& p2) { // +
return Polynomial<NT>(p1) += p2;
}
template < class NT >
CORE_INLINE
Polynomial<NT> operator-(const Polynomial<NT>& p1,
const Polynomial<NT>& p2) { // -
return Polynomial<NT>(p1) -= p2;
}
template < class NT >
CORE_INLINE
Polynomial<NT> operator*(const Polynomial<NT>& p1,
const Polynomial<NT>& p2) { // *
return Polynomial<NT> (p1) *= p2;
}
template < class NT >
CORE_INLINE
Polynomial<NT> power(const Polynomial<NT>& p, int n) { // power
return Polynomial<NT>(p).power(n);
}
// equal to zero poly?
template < class NT >
CORE_INLINE
bool zeroP(const Polynomial <NT>& p) { // =Zero Poly?
return (p.getTrueDegree()== -1);
}
template < class NT >
CORE_INLINE
bool unitP(const Polynomial <NT>& p) { // =Unit Poly?
int d = p.getTrueDegree();
return ((d == 0) && p.coeff[0]==1 );
}
// get functions
template < class NT >
CORE_INLINE
int Polynomial<NT>::getDegree() const {
return degree;
}
// get TRUE leading coefficient
template < class NT >
CORE_INLINE
const NT & Polynomial<NT>::getLeadCoeff() const {
return getCoeff(getTrueDegree());
}
// get last non-zero coefficient
template < class NT >
CORE_INLINE
const NT & Polynomial<NT>::getTailCoeff() const {
for (int i = 0; i<= getTrueDegree(); i++)
if (coeff[i] != 0)
return coeff[i];
// This ought to be an error (user should check this) :
NT * zero = new NT(0);
return *zero;
}
template < class NT >
CORE_INLINE
NT** Polynomial<NT>::getCoeffs() {
return &coeff;
}
template < class NT >
CORE_INLINE
const NT& Polynomial<NT>::getCoeff(int i) const {
//if (i > degree) return NULL;
assert(i <= degree);
return coeff[i];
}
// set functions
template < class NT >
CORE_INLINE
bool Polynomial<NT>::setCoeff(int i, const NT & cc) {
if ((i<0) || (i > degree))
return false;
coeff[i] = cc;
return true;
}
// IMPLEMENTATIONS ARE FOUND IN
//#include <CGAL/CORE/poly/Poly.tcc>
//
// We include this file from CORE/Expr.h, AFTER the definition
// of class Expr, because otherwise VC++.net2003 can'y compile Expr.cpp
CORE_END_NAMESPACE
#endif