cgal/Interpolation/include/CGAL/natural_neighbor_coordinate...

373 lines
14 KiB
C++

// Copyright (c) 2005 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Raphaelle Chaine
#ifndef CGAL_NATURAL_NEIGHBORS_3_H
#define CGAL_NATURAL_NEIGHBORS_3_H
#include <CGAL/tags.h>
#include <iostream> //TO DO : to remove
CGAL_BEGIN_NAMESPACE
// ====================== Geometric Traits utilities =========================================
// === Declarations
template <class Gt>
typename Gt::FT
compute_squared_distance(const typename Gt::Point_3 &p, const typename Gt::Point_3 &q);
template <class Gt>
typename Gt::FT
compute_signed_volume(const typename Gt::Point_3 &p, const typename Gt::Point_3 &q,
const typename Gt::Point_3 &r, const typename Gt::Point_3 &s);
// positive when s is on the positive side of the plane defined
// by p, q, and r
template <class Gt>
typename Gt::FT
compute_squared_area(const typename Gt::Point_3 &p, const typename Gt::Point_3 &q,
const typename Gt::Point_3 &r);
template <class Gt>
typename Gt::FT
signed_area(const typename Gt::Point_3 &p, const typename Gt::Point_3 &q,
const typename Gt::Point_3 &r, const typename Gt::Point_3 &point_of_vue);
//signed area of the triangle determined by p q r
// ====================== Delaunay Triangulation utilities ==========================
// === Declarations
template < class DT>
typename DT::Geom_traits::Point_3
construct_circumcenter(const typename DT::Facet &f,const typename DT::Geom_traits::Point_3 &Q);
// ====================== Natural Neighbors Querries ==========================
// === Definitions
// Given a 3D point Q and a 3D Delaunay triangulation dt,
// the next two functions calculate the natural neighbors and coordinates of Q with regard of dt
//
// OutputIterator has value type
// std::pair<Dt::Vertex_handle, Dt::Geom_traits::FT>
// Result :
// - An OutputIterator providing natural neighbors P_i of Q with unnormalized coordinates a_i associated to them
// - The normalizing coefficient (sum over i of the a_i)
// - A boolean specifying whether the calculation has succeeded or not
template <class Dt, class OutputIterator>
Triple< OutputIterator, // iterator with value type std::pair<Dt::Vertex_handle, Dt::Geom_traits::FT>
typename Dt::Geom_traits::FT, // Should provide 0 and 1
bool >
laplace_natural_neighbor_coordinates_3(const Dt& dt,
const typename Dt::Geom_traits::Point_3& Q,
OutputIterator nn_out, typename Dt::Geom_traits::FT & norm_coeff,
const typename Dt::Cell_handle start = CGAL_TYPENAME_DEFAULT_ARG Dt::Cell_handle())
{
typedef typename Dt::Geom_traits Gt;
typedef typename Gt::Point_3 Point;
typedef typename Dt::Cell_handle Cell_handle;
typedef typename Dt::Vertex_handle Vertex_handle;
typedef typename Dt::Facet Facet;
typedef typename Dt::Cell_circulator Cell_circulator;
typedef typename Dt::Locate_type Locate_type;
typedef typename Gt::FT Coord_type;
CGAL_triangulation_precondition (dt.dimension()== 3);
Locate_type lt; int li, lj;
Cell_handle c = dt.locate( Q, lt, li, lj, start);
if ( lt == Dt::VERTEX )
{
*nn_out++= std::make_pair(c->vertex(li),Coord_type(1));
return make_triple(nn_out,norm_coeff=Coord_type(1),true);
}
else if (dt.is_infinite(c))
return make_triple(nn_out, Coord_type(1), false);//point outside the convex-hull
std::set<Cell_handle> cells;
// To replace the forbidden access to the "in conflict" flag :
// std::find operations on this set
std::vector<Facet> bound_facets; bound_facets.reserve(32);
typename std::vector<Facet>::iterator bound_it;
// Find the cells in conflict with Q
dt.find_conflicts(Q, c,
std::back_inserter(bound_facets),
std::inserter(cells,cells.begin()));
std::map<Vertex_handle,Coord_type> coordinate;
typename std::map<Vertex_handle,Coord_type>::iterator coor_it;
for (bound_it=bound_facets.begin();
bound_it!=bound_facets.end(); ++bound_it)
{//for each facet on the boundary
Facet f1=*bound_it;
Cell_handle cc1=f1.first;
if (dt.is_infinite(cc1))
return make_triple(nn_out,norm_coeff=Coord_type(1), false);//point outside the convex-hull
Cell_handle cc2=cc1->neighbor(f1.second);
CGAL_triangulation_assertion(std::find(cells.begin(),cells.end(),cc1)!=cells.end());//TODO : Delete
CGAL_triangulation_assertion(std::find(cells.begin(),cells.end(),cc2)==cells.end());//TODO : Delete
Point C_1 = construct_circumcenter<Dt>(f1,Q);
for(int j=1;j<4;j++)
{//for each vertex P of the boundary facet
Vertex_handle vP=cc1->vertex((f1.second+j)&3);
Vertex_handle vR=cc1->vertex(dt.next_around_edge(f1.second,(f1.second+j)&3));
// turn around the oriented edge vR vP
Cell_handle cc3=cc1;
int num_next=dt.next_around_edge((f1.second+j)&3,f1.second);
Cell_handle next=cc3->neighbor(num_next);
while (std::find(cells.begin(),cells.end(),next)!=cells.end())
{
CGAL_triangulation_assertion( next != cc1 );
cc3=next;
num_next=dt.next_around_edge(cc3->index(vR),cc3->index(vP));
next=cc3->neighbor(num_next);
}
Point C_3=construct_circumcenter<Dt>(Facet(cc3,num_next),Q);
Point midPQ = midpoint(vP->point(),Q);
Coord_type coor_add = signed_area<Gt>(C_3,C_1,midPQ, vP->point());
((coor_it=coordinate.find(vP))==coordinate.end())?
coordinate[vP]=coor_add : coor_it->second+=coor_add;// Replace by a function call
}
}//end : for each facet on the boundary
norm_coeff=0;
for (coor_it = coordinate.begin();
coor_it != coordinate.end();
++coor_it)
{
Coord_type co = coor_it->second/
(CGAL_NTS sqrt(compute_squared_distance<Gt>(coor_it->first->point(),Q)));
*nn_out++= std::make_pair(coor_it->first,co);
norm_coeff+=co;
}
return make_triple(nn_out,norm_coeff,true);
}
template <class Dt, class OutputIterator>
Triple< OutputIterator, // iterator with value type std::pair<Dt::Vertex_handle, Dt::Geom_traits::FT>
typename Dt::Geom_traits::FT, // Should provide 0 and 1
bool >
sibson_natural_neighbor_coordinates_3(const Dt& dt,
const typename Dt::Geom_traits::Point_3& Q,
OutputIterator nn_out, typename Dt::Geom_traits::FT & norm_coeff,
const typename Dt::Cell_handle start = CGAL_TYPENAME_DEFAULT_ARG Dt::Cell_handle())
{
typedef typename Dt::Geom_traits Gt;
typedef typename Gt::Point_3 Point;
typedef typename Dt::Cell_handle Cell_handle;
typedef typename Dt::Vertex_handle Vertex_handle;
typedef typename Dt::Facet Facet;
typedef typename Dt::Cell_circulator Cell_circulator;
typedef typename Dt::Locate_type Locate_type;
typedef typename Gt::FT Coord_type;
CGAL_triangulation_precondition (dt.dimension()== 3);
Locate_type lt; int li, lj;
Cell_handle c = dt.locate( Q, lt, li, lj, start);
if ( lt == Dt::VERTEX )
{
*nn_out++= std::make_pair(c->vertex(li),Coord_type(1));
return make_triple(nn_out,norm_coeff=Coord_type(1),true);
}
else if (dt.is_infinite(c))
return make_triple(nn_out, Coord_type(1), false);//point outside the convex-hull
std::set<Cell_handle> cells;
typename std::set<Cell_handle>::iterator cit;
// To replace the forbidden access to the "in conflict" flag :
// std::find operations on this set
// Find the cells in conflict with Q
dt.find_conflicts(Q, c,
Emptyset_iterator(),
std::inserter(cells,cells.begin()));
std::map<Vertex_handle,Coord_type> coordinate;
typename std::map<Vertex_handle,Coord_type>::iterator coor_it;
for (cit = cells.begin(); cit != cells.end(); ++cit)
{// for each cell cc1 in conflict
Cell_handle cc1=*cit;
CGAL_triangulation_assertion(std::find(cells.begin(),cells.end(),cc1)!=cells.end());//TODO : Delete
if (dt.is_infinite(cc1))
return make_triple(nn_out,norm_coeff=Coord_type(1), false);//point outside the convex-hull
Point C1 = dt.dual(cc1);
for(int i=0;i<4;i++)
{//for each neighboring cell cc2 of cc1
Cell_handle cc2=cc1->neighbor(i);
if(std::find(cells.begin(),cells.end(),cc2)==cells.end())
{// cc2 outside the conflict cavity
Point C_1 = construct_circumcenter<Dt>(Facet(cc1,i),Q);
for(int j=1;j<4;j++)
{//for each vertex P of the boundary facet
Vertex_handle vP=cc1->vertex((i+j)&3);//&3 in place of %4
Vertex_handle vR=cc1->vertex(dt.next_around_edge(i,(i+j)&3));
// turn around the oriented edge vR vP
Cell_handle cc3=cc1;
int num_next=dt.next_around_edge((i+j)&3,i);
Cell_handle next=cc3->neighbor(num_next);
while (std::find(cells.begin(),cells.end(),next)!=cells.end())
{ //next is in conflict
CGAL_triangulation_assertion( next != cc1 );
cc3=next;
num_next=dt.next_around_edge(cc3->index(vR),cc3->index(vP));
next=cc3->neighbor(num_next);
}
if (dt.is_infinite(cc3))
return make_triple(nn_out,norm_coeff=Coord_type(1), false);//point outside the convex-hull
Point C3=dt.dual(cc3);
Point C_3=construct_circumcenter<Dt>(Facet(cc3,num_next),Q);
Point midPQ = midpoint(vP->point(),Q);
Point midPR = midpoint(vP->point(),vR->point());
Coord_type coor_add = compute_signed_volume<Gt>(C_1,C1,midPR,midPQ);
coor_add -= compute_signed_volume<Gt>(C_1,C_3,midPR,midPQ);
coor_add += compute_signed_volume<Gt>(C3,C_3,midPR,midPQ);
((coor_it=coordinate.find(vP))==coordinate.end())?
coordinate[vP]=coor_add : coor_it->second+=coor_add;// Replace by a function call
}
}
else // cc2 in the conflict cavity
{
CGAL_triangulation_assertion(std::find(cells.begin(),cells.end(),cc2)!=cells.end());//TODO : Delete
if (dt.is_infinite(cc2))
return make_triple(nn_out,norm_coeff=Coord_type(1), false);//point outside the convex-hull
Point C2=dt.dual(cc2);
for(int j=1;j<4;j++)
{//for each vertex P of the internal facet
Vertex_handle vP=cc1->vertex((i+j)&3);
Vertex_handle vR=cc1->vertex(dt.next_around_edge(i,(i+j)&3));
Point midPQ = midpoint(vP->point(),Q);
Point midPR = midpoint(vP->point(),vR->point());
Coord_type coor_add = compute_signed_volume<Gt>(C2,C1,midPR,midPQ);
((coor_it=coordinate.find(vP))==coordinate.end())?
coordinate[vP]=coor_add : coor_it->second+=coor_add;// Replace by a function call
}
}
}
}
norm_coeff=1;
for (coor_it = coordinate.begin();
coor_it != coordinate.end();
++coor_it)
{
*nn_out++= std::make_pair(coor_it->first,coor_it->second);
norm_coeff+=coor_it->second;
}
return make_triple(nn_out,norm_coeff,true);
}
template <typename Dt, typename InputIterator>
bool is_correct_natural_neighborhood(const Dt& /*dt*/,
const typename Dt::Geom_traits::Point_3 & Q,
InputIterator it_begin, InputIterator it_end,
const typename Dt::Geom_traits::FT & norm_coeff)
{
typedef typename Dt::Geom_traits Gt;
typedef typename Gt::Point_3 Point;
typedef typename Gt::FT Coord_type;
Coord_type sum_x(0);
Coord_type sum_y(0);
Coord_type sum_z(0);
InputIterator it;
for(it = it_begin ; it != it_end ; ++it)
{
sum_x += it->second*(it->first->point().x());
sum_y += it->second*(it->first->point().y());
sum_z += it->second*(it->first->point().z());
}
//!!!! to be replaced by a linear combination of points as soon
// as it is available in the kernel.
std::cout << sum_x/norm_coeff << " "
<< sum_y/norm_coeff << " "
<< sum_z/norm_coeff << std::endl;
return ((sum_x==norm_coeff*Q.x())&&(sum_y==norm_coeff*Q.y())
&&(sum_z==norm_coeff*Q.z()));
}
// ====================== Geometric Traits utilities =========================================
// === Definitions
template <class Gt>
typename Gt::FT
compute_squared_distance(const typename Gt::Point_3 &p, const typename Gt::Point_3 &q)
{
return Gt().compute_squared_distance_3_object()(p,q);
}
template <class Gt>
typename Gt::FT
compute_signed_volume(const typename Gt::Point_3 &p, const typename Gt::Point_3 &q,
const typename Gt::Point_3 &r, const typename Gt::Point_3 &s)
{
return Gt().compute_volume_3_object()
(Gt().construct_tetrahedron_3_object()(p,q,r,s));
}// positive when s is on the positive side of the plane defined
// by p, q, and r
template <class Gt>
typename Gt::FT
compute_squared_area(const typename Gt::Point_3 &p, const typename Gt::Point_3 &q,
const typename Gt::Point_3 &r)
{
return Gt().compute_squared_area_3_object()
(Gt().construct_triangle_3_object()
(p,q,r));
}
template <class Gt>
typename Gt::FT
signed_area(const typename Gt::Point_3 &p, const typename Gt::Point_3 &q,
const typename Gt::Point_3 &r, const typename Gt::Point_3 &point_of_vue)
//signed area of the triangle determined by p q r
{
return sqrt(compute_squared_area<Gt>(p,q,r))
*(orientation(p, q, r, point_of_vue) == COUNTERCLOCKWISE?+1:-1);
}
// ====================== Delaunay Triangulation utilities ==========================
// === Definitions
template < class DT>
typename DT::Geom_traits::Point_3
construct_circumcenter(const typename DT::Facet &f,const typename DT::Geom_traits::Point_3 &Q)
{
CGAL_triangulation_precondition(//&3 in place of %4
!coplanar(f.first->vertex((f.second+1)&3)->point(),
f.first->vertex((f.second+2)&3)->point(),
f.first->vertex((f.second+3)&3)->point(),
Q));
// else the facet is not on the enveloppe of the conflict cavity associated to P
return typename DT::Geom_traits().construct_circumcenter_3_object()
(f.first->vertex((f.second+1)&3)->point(),
f.first->vertex((f.second+2)&3)->point(),
f.first->vertex((f.second+3)&3)->point(),
Q);
}
CGAL_END_NAMESPACE
#endif // CGAL_NATURAL_NEIGHBORS_3_H