cgal/Nef_3/triangulation/include/CGAL/partition_y_monotone_2.h

540 lines
19 KiB
C++

// ======================================================================
//
// Copyright (c) 2000 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------
//
// release : $CGAL_Revision: CGAL-2.5-I-117 $
// release_date : $CGAL_Date: 2003/07/25 $
//
// file : include/CGAL/partition_y_monotone_2.h
// package : Partition_2 (1.53)
// maintainer : Mariette Yvinec <Mariette.Yvinec@sophia.inria.fr>
// chapter : Planar Polygon Partitioning
//
// revision : $Id$
// revision_date : $Date$
//
// author(s) : Susan Hert <hert@mpi-sb.mpg.de>
//
// coordinator : MPI (Susan Hert <hert@mpi-sb.mpg.de>)
//
// implementation: Y-monotone polygon partitioning
// ======================================================================
//
// Implementaion of the algorithm from pp 49--55 of "Computational Geometry
// Algorithms and Applications" by de Berg, van Kreveld, Overmars, and
// Schwarzkopf for producing a partitioning of a polygon into y-monotone
// pieces.
//
// NOTE: e_i = (v_i, v_{i+1})
//
// TREE:
// "Therefore we store the edges of P intersecting the sweep line in the
// leaves of a dynamic binary search tree T. The left-to-right order of
// the leaves of T corresponds to the left-to-right order of the edges.
// Because we are only interested in edges to the left of split and merge
// vertices we only need to store edges in T that have the interior of P
// to their right. With each edge in T we store its helper."
//
//
#ifndef CGAL_PARTITION_Y_MONOTONE_H
#define CGAL_PARTITION_Y_MONOTONE_H
#include <CGAL/Indirect_not_less_yx_2.h>
#include <CGAL/Indirect_edge_compare.h>
#include <CGAL/IO/Tee_for_output_iterator.h>
#include <CGAL/partition_assertions.h>
#include <CGAL/Partition_traits_2.h>
#include <CGAL/Circulator_project.h>
#include <CGAL/function_objects.h>
#include <CGAL/functional.h>
#include <map>
#undef _DEBUG
#define _DEBUG 11
#include <CGAL/Nef_2/debug.h>
namespace CGAL {
enum Partition_y_mono_vertex_type {PARTITION_Y_MONO_START_VERTEX,
PARTITION_Y_MONO_SPLIT_VERTEX,
PARTITION_Y_MONO_REGULAR_VERTEX,
PARTITION_Y_MONO_COLLINEAR_VERTEX,
PARTITION_Y_MONO_MERGE_VERTEX,
PARTITION_Y_MONO_END_VERTEX};
//
// assumes CCW orientation of vertices
//
template <class BidirectionalCirculator, class Traits>
Partition_y_mono_vertex_type partition_y_mono_vertex_type(
BidirectionalCirculator c,
const Traits& traits)
{
BidirectionalCirculator previous = c;
previous--;
BidirectionalCirculator next = c;
next++;
#ifdef CGAL_PARTITION_Y_MONOTONE_DEBUG
std::cout << "partition_y_mono__vertex_type: previous " << *previous
<< " c " << *c << " next " << *next << std::endl;
#endif
typename Traits::Compare_y_2 compare_y_2 = traits.compare_y_2_object();
typename Traits::Collinear_are_ordered_along_line_2
collinear_are_ordered_along_line_2
= traits.collinear_are_ordered_along_line_2_object();
if (compare_y_2(*previous, *c) == EQUAL &&
compare_y_2(*next, *c) == EQUAL &&
collinear_are_ordered_along_line_2( *previous, *c, *next))
return PARTITION_Y_MONO_COLLINEAR_VERTEX;
typename Traits::Less_yx_2 less_yx = traits.less_yx_2_object();
typename Traits::Left_turn_2 left_turn = traits.leftturn_2_object();
if (less_yx(*previous, *c))
{
if (less_yx(*next, *c)) // previous and next both less_yx
if (left_turn(*previous, *c, *next)) // interior angle less than pi
return PARTITION_Y_MONO_START_VERTEX;
else // interior angle greater than pi
return PARTITION_Y_MONO_SPLIT_VERTEX;
else // previous less_yx and next not
return PARTITION_Y_MONO_REGULAR_VERTEX;
}
else
{
if (less_yx(*c, *next)) // previous and next both not less_yx
if (left_turn(*previous, *c, *next)) // interior angle less than pi
return PARTITION_Y_MONO_END_VERTEX;
else // interior angle greater than pi
return PARTITION_Y_MONO_MERGE_VERTEX;
else // next less_yx and previous not
return PARTITION_Y_MONO_REGULAR_VERTEX;
}
}
template <class Tree>
void partition_y_mono_print_tree(Tree tree)
{
typedef typename Tree::iterator iterator;
iterator it = tree.begin();
for (; it != tree.end(); it++) {
std::cout << "edge node " << *(*it).first << " helper " << *(*it).second
<< std::endl;
}
std::cout << std::endl;
}
template <class BidirectionalCirculator, class Tree>
void partition_y_mono_handle_start_vertex(BidirectionalCirculator c,
Tree& tree)
{
typedef typename Tree::value_type ValuePair;
#ifdef CGAL_PARTITION_Y_MONOTONE_DEBUG
std::cout << *c << " is a start vertex " << std::endl;
#endif
tree.insert(ValuePair(c, c));
#ifdef CGAL_PARTITION_Y_MONOTONE_DEBUG
std::cout << "partition_handle_start_vertex: after insert tree is "
<< std::endl;
partition_y_mono_print_tree(tree);
#endif
// insert e_i (edge from *c to *++c) into "tree" with helper(e_i) = v_i
}
template <class BidirectionalCirculator, class Tree,
class OutputIterator, class Traits>
void partition_y_mono_handle_end_vertex(BidirectionalCirculator c, Tree& tree,
OutputIterator diagonals,
const Traits& traits )
{
#ifdef CGAL_PARTITION_Y_MONOTONE_DEBUG
std::cout << *c << " is an end vertex " << std::endl;
#endif
typedef typename Tree::iterator tree_iterator;
typedef typename Traits::Diagonal Diagonal;
tree_iterator it;
BidirectionalCirculator previous = c;
previous--;
#ifdef CGAL_PARTITION_Y_MONOTONE_DEBUG
std::cout << "partition_y_mono_handle_end_vertex: previous " << *previous
<< std::endl;
#endif
it = tree.find(previous);
CGAL_assertion (it != tree.end());
if (partition_y_mono_vertex_type((*it).second, traits) ==
PARTITION_Y_MONO_MERGE_VERTEX)
{
#ifdef CGAL_PARTITION_Y_MONOTONE_DEBUG
std::cout << "partition_y_mono_handle_end_vertex: diagonal "
<< *(*it).second << " to " << *c << std::endl;
#endif
*diagonals++ = Diagonal( c, (*it).second);
}
tree.erase(it);
#ifdef CGAL_PARTITION_Y_MONOTONE_DEBUG
std::cout << "partition_y_mono_handle_end_vertex: after erase tree is "
<< std::endl;
partition_y_mono_print_tree(tree);
#endif
// if helper(e_{i-1}) is a merge vertex
// insert diagonal connecting v_i to helper(e_{i-1})
// delete e_{i-1} from tree
}
template<class BidirectionalCirculator, class Iterator, class Tree>
inline
void partition_y_mono_edge_directly_left(BidirectionalCirculator c, Tree& tree,
Iterator& it)
{
it = tree.lower_bound(c); // edge directly to the left of v_i since the
// items in the tree are sorted from right to
// left
#ifdef CGAL_PARTITION_Y_MONOTONE_DEBUG
if (it != tree.end())
std::cout << "partition_y_mono_edge_directly_left: lower_bound edge node: "
<< *((*it).first) << " helper " << *((*it).second) << std::endl;
#endif
}
template <class BidirectionalCirculator, class Tree, class OutputIterator, class Traits>
void partition_y_mono_handle_split_vertex(BidirectionalCirculator c,
Tree& tree, OutputIterator diagonals,
const Traits& traits)
{
#ifdef CGAL_PARTITION_Y_MONOTONE_DEBUG
std::cout << *c << " is a split vertex " << std::endl;
#endif
typedef typename Tree::iterator tree_iterator;
typedef typename Tree::value_type ValuePair;
typedef typename Traits::Diagonal Diagonal;
tree_iterator it;
partition_y_mono_edge_directly_left(c, tree, it);
if (it != tree.end())
{
#ifdef CGAL_PARTITION_Y_MONOTONE_DEBUG
std::cout << "partition_y_mono_handle_split_vertex: diagonal "
<< *(*it).second << " to " << *c << std::endl;
#endif
*diagonals++ = Diagonal( c, (*it).second);
BidirectionalCirculator ej = (*it).first;
tree.erase(it);
tree.insert(ValuePair(ej, c));
}
tree.insert(ValuePair(c, c));
#ifdef CGAL_PARTITION_Y_MONOTONE_DEBUG
std::cout << "partition_y_mono_handle_split_vertex: "
<< "after erase and inserts tree is" << std::endl;
partition_y_mono_print_tree(tree);
#endif
// 1. find the edge e_j in tree directly to the left of v_i
// 2. insert the diagonal connecting v_i to helper(e_j)
// 3. helper(e_j) = v_i
// 4. Insert e_i in tree and set helper(e_i) to v_i
}
template <class BidirectionalCirculator, class Tree,
class OutputIterator, class Traits>
void partition_y_mono_handle_merge_vertex(BidirectionalCirculator c,
Tree& tree,
OutputIterator diagonals,
const Traits& traits)
{
#ifdef CGAL_PARTITION_Y_MONOTONE_DEBUG
std::cout << *c << " is a merge vertex " << std::endl;
#endif
typedef typename Tree::iterator tree_iterator;
typedef typename Tree::value_type ValuePair;
typedef typename Traits::Diagonal Diagonal;
BidirectionalCirculator prev = c;
prev--;
tree_iterator it = tree.find(prev);
CGAL_assertion (it != tree.end());
if (partition_y_mono_vertex_type((*it).second,traits) ==
PARTITION_Y_MONO_MERGE_VERTEX)
{
#ifdef CGAL_PARTITION_Y_MONOTONE_DEBUG
std::cout << "partition_y_mono_handle_merge_vertex 1: diagonal "
<< *(*it).second << " to " << *c << std::endl;
#endif
*diagonals++ = Diagonal( c, (*it).second);
}
tree.erase(it);
partition_y_mono_edge_directly_left(c, tree, it);
if (it != tree.end())
{
if (partition_y_mono_vertex_type((*it).second,traits) ==
PARTITION_Y_MONO_MERGE_VERTEX)
{
#ifdef CGAL_PARTITION_Y_MONOTONE_DEBUG
std::cout << "partition_y_mono_handle_merge_vertex 2: diagonal "
<< *(*it).second << " to " << *c << std::endl;
#endif
*diagonals++ = Diagonal( c, (*it).second);
}
BidirectionalCirculator ej = (*it).first;
tree.erase(it);
tree.insert(ValuePair(ej,c));
}
#ifdef CGAL_PARTITION_Y_MONOTONE_DEBUG
std::cout << "partition_y_mono_handle_merge_vertex: after erase(s) tree is "
<< std::endl;
partition_y_mono_print_tree(tree);
#endif
// 1. if helper(e_{i-1}) is a merge vertex
// insert the diagonal connecting v_i to helper(e_{i-1})
// 2. delete e_{i-1} from tree
// 3. find the edge e_j in tree directly to the left of v_i
// 4. if helper(e_j) is a merge vertex
// insert diagonal connecting v_i to helper(e_j) in polygon
// 5. helper(e_j) = v_i
}
template <class BidirectionalCirculator, class Traits>
bool partition_y_mono_interior_to_right(BidirectionalCirculator c,
const Traits& traits)
{
typename Traits::Compare_y_2 compare_y_2 = traits.compare_y_2_object();
BidirectionalCirculator previous = c; previous--;
Comparison_result cmp_y = compare_y_2(*previous, *c);
if (cmp_y == LARGER) return true;
BidirectionalCirculator next = c; next++;
if (cmp_y == EQUAL && compare_y_2(*next, *c) == SMALLER) return true;
return false;
}
template <class BidirectionalCirculator, class Tree, class OutputIterator,
class Traits>
void partition_y_mono_handle_regular_vertex(BidirectionalCirculator c,
Tree& tree,
OutputIterator diagonals,
const Traits& traits )
{
#ifdef CGAL_PARTITION_Y_MONOTONE_DEBUG
std::cout << *c << " is a regular vertex " << std::endl;
#endif
typedef typename Tree::iterator tree_iterator;
typedef typename Tree::value_type ValuePair;
typedef typename Traits::Diagonal Diagonal;
tree_iterator it;
BidirectionalCirculator previous = c;
previous--;
if (partition_y_mono_interior_to_right(c, traits))
{
it = tree.find(previous);
CGAL_assertion( it != tree.end() );
if (partition_y_mono_vertex_type((*it).second, traits) ==
PARTITION_Y_MONO_MERGE_VERTEX)
{
#ifdef CGAL_PARTITION_Y_MONOTONE_DEBUG
std::cout << "partition_y_mono_handle_regular_vertex 1: diagonal "
<< *(*it).second << " to " << *c << std::endl;
#endif
*diagonals++ = Diagonal( c, (*it).second);
}
tree.erase(it);
tree.insert(ValuePair(c,c));
}
else
{
partition_y_mono_edge_directly_left(c, tree, it);
CGAL_assertion (it != tree.end());
if (partition_y_mono_vertex_type((*it).second, traits) ==
PARTITION_Y_MONO_MERGE_VERTEX)
{
#ifdef CGAL_PARTITION_Y_MONOTONE_DEBUG
std::cout << "partition_y_mono_handle_regular_vertex 2: diagonal "
<< *c << " to " << *(*it).second << std::endl;
#endif
*diagonals++ = Diagonal( c, (*it).second);
}
BidirectionalCirculator ej = (*it).first;
tree.erase(it);
tree.insert(ValuePair(ej,c));
}
#ifdef CGAL_PARTITION_Y_MONOTONE_DEBUG
std::cout << "partition_y_mono_handle_regular_vertex: "
<< "after erase and insert tree is" << std::endl;
partition_y_mono_print_tree(tree);
#endif
// if interior of polygon lies to the right of v_i
// if helper(e_{i-1}) is a merge vertex
// insert diagonal connecting v_i to helper(e_{i-1}) in polygon
// delete e_{i-1} from tree
// insert e_i in tree and set helper(e_i) to v_i
// else
// find the edge e_j in tree directly left of v_i
// if helper(e_j) is a merge vertex
// insert diagonal connecting v_i to helper(e_j) in D
// helper(e_j) = v_i
}
template <class BidirectionalCirculator, class Tree>
void partition_y_mono_handle_collinear_vertex(BidirectionalCirculator c,
Tree& tree)
{
typedef typename Tree::iterator tree_iterator;
typedef typename Tree::value_type ValuePair;
#ifdef CGAL_PARTITION_Y_MONOTONE_DEBUG
std::cout << *c << " is a collinear vertex " << std::endl;
#endif
tree_iterator it;
BidirectionalCirculator previous = c;
previous--;
#ifdef CGAL_PARTITION_Y_MONOTONE_DEBUG
std::cout << *previous << " is the previous vertex " << std::endl;
#endif
it = tree.find(previous);
if ( it != tree.end() )
{
#ifdef CGAL_PARTITION_Y_MONOTONE_DEBUG
std::cout << "partition_y_mono_handle_collinear_vertex : removing "
<< *(*it).first << std::endl;
#endif
tree.erase(it);
}
tree.insert(ValuePair(c,c));
}
template <class InputIterator, class OutputIterator, class Traits>
void partition_y_monotone_2( InputIterator first, InputIterator beyond,
OutputIterator diagonals, const Traits& traits)
{
typedef typename InputIterator::value_type Circulator;
#ifdef _DEBUG
typedef Container_from_circulator<Circulator> Container;
typedef typename Traits::Point_2 Point_2;
#endif
std::vector<Circulator> circulators;
InputIterator bi = first;
Circulator circ(*bi), done(circ);
#ifdef _DEBUG
//CGAL_assertion_code(Container cycle(circ));
//CGAL_NEF_TRACEN("partition_y_monotone_2(): outer cycle:");
//std::copy( cycle.begin(), cycle.end(), std::ostream_iterator<Point_2>( std::cerr, "\n"));
#endif
//CGAL_partition_precondition
//CGAL_partition_warning
// (orientation_2( cycle.begin(), cycle.end(), traits) == COUNTERCLOCKWISE);
CGAL_For_all( circ, done){
circulators.push_back(circ);
}
for( ++bi; bi != beyond; ++bi) {
Circulator circ(*bi), done(circ);
#ifdef _DEBUG
//CGAL_assertion_code(Container cycle(circ));
//CGAL_NEF_TRACEN("partition_y_monotone_2(): inner cycle:");
//std::copy( cycle.begin(), cycle.end(), std::ostream_iterator<Point_2>( std::cerr, "\n"));
#endif
//CGAL_partition_precondition
//CGAL_partition_warning
// (orientation_2( cycle.begin(), cycle.end(), traits) == CLOCKWISE);
CGAL_For_all( circ, done){
circulators.push_back(circ);
}
}
std::sort(circulators.begin(), circulators.end(),
Indirect_not_less_yx_2<Traits>(traits));
#ifdef CGAL_PARTITION_Y_MONOTONE_DEBUG
std::cout << "Initial vertex list: ";
for( typename std::vector<Circulator>::const_iterator it = circulators.begin();
it != circulators.end();
it++){
std::cout << **it << " " ;
}
std::cout << std::endl;
#endif
typedef std::map<Circulator, Circulator,
Indirect_edge_compare<Circulator, Traits> > Tree;
Tree tree;
typename std::vector<Circulator>::iterator it = circulators.begin();
for (; it != circulators.end(); it++) {
switch (partition_y_mono_vertex_type(*it, traits))
{
case PARTITION_Y_MONO_START_VERTEX:
partition_y_mono_handle_start_vertex(*it, tree);
break;
case PARTITION_Y_MONO_SPLIT_VERTEX:
partition_y_mono_handle_split_vertex(*it, tree, diagonals, traits);
break;
case PARTITION_Y_MONO_END_VERTEX:
partition_y_mono_handle_end_vertex(*it, tree, diagonals, traits);
break;
case PARTITION_Y_MONO_MERGE_VERTEX:
partition_y_mono_handle_merge_vertex(*it, tree, diagonals, traits);
break;
case PARTITION_Y_MONO_REGULAR_VERTEX:
partition_y_mono_handle_regular_vertex(*it, tree, diagonals, traits);
break;
case PARTITION_Y_MONO_COLLINEAR_VERTEX:
partition_y_mono_handle_collinear_vertex(*it, tree);
break;
}
}
/*
CGAL_partition_postcondition(
y_monotone_partition_is_valid_2(polygon.begin(), polygon.end(),
res.output_so_far_begin(),
res.output_so_far_end(), traits));
*/
}
template <class InputIterator, class OutputIterator>
inline void partition_y_monotone_2( InputIterator first,
InputIterator beyond,
OutputIterator diagonals)
{
typedef typename std::iterator_traits<InputIterator>::value_type
BoundaryCirculator;
typedef typename std::iterator_traits<BoundaryCirculator>::value_type
Point_2;
typedef typename Kernel_traits<Point_2>::Kernel K;
partition_y_monotone_2( first, beyond, diagonals,
Partition_traits_2< BoundaryCirculator, K>());
}
}
#endif // CGAL_PARTITION_Y_MONOTONE_H