cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Univaria...

47 lines
1.7 KiB
TeX

\begin{ccRefConcept}{PolynomialTraits_d::UnivariateContentUpToConstantFactor}
\ccDefinition
This \ccc{AdaptableBinaryFunction} computes the content of a
\ccc{PolynomialTraits_d::Polynomial_d}
with respect to the univariate (recursive) view on the
polynomial {\em up to a constant factor}.
In particular it computes the $gcd_up_to_constant_factor$ of all
coefficients with respect to one variable.
Remark: This is called \ccc{UnivariateContentUpToConstantFactor} for
symmetric reasons with respect to \ccc{PolynomialTraits_d::UnivariateContent}
and \ccc{PolynomialTraits_d::MultivariateContent}.
However, a concept \ccc{PolynomialTraits_d::MultivariateContentUpToConstantFactor} does not exist
since the result is trivial.
\ccRefines
\ccc{AdaptableBinaryFunction}
\ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccTypedef{typedef PolynomialTraits_d::Coefficient result_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue
\ccTypedef{typedef int second_argument_type;}{}
\ccOperations
\ccMethod{result_type operator()(first_argument_type p);}
{Computes the content {\em up to a constant factor} of $p$ with
respect to the outermost variable $x_{d-1}$. }
\ccMethod{result_type operator()(first_argument_type p, int i);}
{Computes the content {\em up to a constant factor} of $p$ with
respect to variable $x_i$.
\ccPrecond $0 \leq i < d$
}
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}
\ccRefIdfierPage{PolynomialTraits_d::GcdUpToConstantFactor}\\
\end{ccRefConcept}