cgal/Algebraic_kernel_d/doc/Algebraic_kernel_d/PackageDescription.txt

102 lines
3.4 KiB
Plaintext

/// \defgroup PkgAlgebraicKernelDRef Reference Manual
/// \defgroup PkgAlgebraicKernelDConcepts Concepts
/// \ingroup PkgAlgebraicKernelDRef
/// \defgroup PkgAlgebraicKernelDConceptsUni Univariate Algebraic Kernel
/// \ingroup PkgAlgebraicKernelDConcepts
/// \defgroup PkgAlgebraicKernelDConceptsBi Bivariate Algebraic Kernel
/// \ingroup PkgAlgebraicKernelDConcepts
/// \defgroup PkgAlgebraicKernelDModels Models
/// \ingroup PkgAlgebraicKernelDRef
/*!
\addtogroup PkgAlgebraicKernelDRef
\cgalPkgDescriptionBegin{Algebraic Kernel,PkgAlgebraicKernelD}
\cgalPkgPicture{Algebraic_kernel_d.png}
\cgalPkgSummaryBegin
\cgalPkgAuthors{Eric Berberich, Michael Hemmer, Michael Kerber, Sylvain Lazard, Luis Peñaranda, and Monique Teillaud}
\cgalPkgDesc{Real solving of polynomials is a fundamental problem with a wide application range. This package is targeted to provide black-box implementation algorithms to determine, compare and approximate real roots of univariate polynomials and bivariate polynomial systems. Such a black-box is called an *Algebraic %Kernel*. So far the package only provides models for the univariate kernel. Nevertheless, it already defines concepts for the bivariate kernel, since this settles the interface for upcoming implementations.}
\cgalPkgManuals{Chapter_Algebraic_Kernel,PkgAlgebraicKernelDRef}
\cgalPkgSummaryEnd
\cgalPkgShortInfoBegin
\cgalPkgSince{3.6}
\cgalPkgBib{cgal:bht-ak}
\cgalPkgLicense{\ref licensesLGPL "LGPL"}
\cgalPkgShortInfoEnd
\cgalPkgDescriptionEnd
\cgalClassifedRefPages
\cgalCRPSection{Concepts}
\cgalCRPSubsection{Univariate Algebraic %Kernel}
- `AlgebraicKernel_d_1`
- `AlgebraicKernel_d_1::ConstructAlgebraicReal_1`
- `AlgebraicKernel_d_1::ComputePolynomial_1`
- `AlgebraicKernel_d_1::Isolate_1`
- `AlgebraicKernel_d_1::IsSquareFree_1`
- `AlgebraicKernel_d_1::MakeSquareFree_1`
- `AlgebraicKernel_d_1::SquareFreeFactorize_1`
- `AlgebraicKernel_d_1::IsCoprime_1`
- `AlgebraicKernel_d_1::MakeCoprime_1`
- `AlgebraicKernel_d_1::Solve_1`
- `AlgebraicKernel_d_1::NumberOfSolutions_1`
- `AlgebraicKernel_d_1::SignAt_1`
- `AlgebraicKernel_d_1::IsZeroAt_1`
- `AlgebraicKernel_d_1::Compare_1`
- `AlgebraicKernel_d_1::BoundBetween_1`
- `AlgebraicKernel_d_1::ApproximateAbsolute_1`
- `AlgebraicKernel_d_1::ApproximateRelative_1`
\cgalCRPSubsection{Bivariate Algebraic %Kernel}
- `AlgebraicKernel_d_2`
- `AlgebraicKernel_d_2::ConstructAlgebraicReal_2`
- `AlgebraicKernel_d_2::ComputePolynomialX_2`
- `AlgebraicKernel_d_2::ComputePolynomialY_2`
- `AlgebraicKernel_d_2::Isolate_2`
- `AlgebraicKernel_d_2::IsolateX_2`
- `AlgebraicKernel_d_2::IsolateY_2`
- `AlgebraicKernel_d_2::IsSquareFree_2`
- `AlgebraicKernel_d_2::MakeSquareFree_2`
- `AlgebraicKernel_d_2::SquareFreeFactorize_2`
- `AlgebraicKernel_d_2::IsCoprime_2`
- `AlgebraicKernel_d_2::MakeCoprime_2`
- `AlgebraicKernel_d_2::Solve_2`
- `AlgebraicKernel_d_2::NumberOfSolutions_2`
- `AlgebraicKernel_d_2::SignAt_2`
- `AlgebraicKernel_d_2::IsZeroAt_2`
- `AlgebraicKernel_d_2::ComputeX_2`
- `AlgebraicKernel_d_2::ComputeY_2`
- `AlgebraicKernel_d_2::CompareX_2`
- `AlgebraicKernel_d_2::CompareY_2`
- `AlgebraicKernel_d_2::CompareXY_2`
- `AlgebraicKernel_d_2::ApproximateAbsoluteX_2`
- `AlgebraicKernel_d_2::ApproximateRelativeX_2`
- `AlgebraicKernel_d_2::ApproximateAbsoluteY_2`
- `AlgebraicKernel_d_2::ApproximateRelativeY_2`
- `AlgebraicKernel_d_2::BoundBetweenX_2`
- `AlgebraicKernel_d_2::BoundBetweenY_2`
\cgalCRPSection{Models}
- `CGAL::Algebraic_kernel_d_1<Coeff>`
- `CGAL::Algebraic_kernel_d_2<Coeff>`
*/