cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d.tex

110 lines
4.0 KiB
TeX

\begin{ccRefConcept}{PolynomialTraits_d}
\ccDefinition
A model of \ccc{PolynomialTraits_d} is associated to an type
\ccc{Polynomial_d}, representing a multivariate polynomial
\footnote{Univariate polynomials are not excluded by this concept.}.
The number of variables is denoted as the dimension $d$ of the polynomial,
it is arbitrary but fixed for a certain model of this concept.
\ccc{PolynomialTraits_d} provides two different views on the
multivariate polynomial.
\begin{itemize}
\item A recursive view, that sees the polynomial as an element of
$R[x_0,\dots,x_{d-2}][x_{d-1}]$. In this view, the polynomial is handled as
an univariate polynomial over the ring $R[x_0,\dots,x_{d-2}]$.
\item A symmetric view, which is symmetric with respect to all variables,
seeing the polynomials as element of $R[x_0,\dots,x_{d-1}]$.
\end{itemize}
The default view is the recursive view, therefore all functors are
designed such that there default version performs the operation
with respect to this view.
\ccRefines
\ccConstants
\ccVariable{const int d;}{The dimension and the number of variables respectively.}
\ccTypes
\ccNestedType{Polynomial_d}{ Type representing $R[x_0,\dots,x_{d-1}]$.}\ccGlue
\ccNestedType{Coefficient }{ Type representing $R[x_0,\dots,x_{d-2}]$.}\ccGlue
\ccNestedType{Innermost_coefficient}{ Type representing the base ring $R$.}
\ccNestedType{template <typename T, int d> struct Rebind}
{This nested template class has to define a type \ccc{Other} which is a model
of the concept \ccc{PolynomialTraits_d}, where \ccc{d} is the number of variables
and \ccc{T} the \ccc{Innermost_coefficient_type}.}
\ccHeading{Functors}
In case a functor is not provided it is set to \ccc{CGAL::Null_functor}.
%,e.g., \ccc{Sign_at} if \ccc{Innermost_coefficient} is not \ccc{RealEmbeddable}.
\ccSetTwoColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{}
\ccNestedType{Construct_polynomial}
{A model of \ccc{PolynomialTraits_d::ConstructPolynomial}.}
\ccNestedType{Get_coefficient}
{A model of \ccc{PolynomialTraits_d::GetCoefficient}.}
\ccNestedType{Get_innermost_coefficient}
{A model of \ccc{PolynomialTraits_d::GetInnermostCoefficient}.}
\ccNestedType{Swap}
{ A model of \ccc{PolynomialTraits_d::Swap}.}
\ccNestedType{Move}
{ A model of \ccc{PolynomialTraits_d::Move}.}
\ccNestedType{Degree}
{ A model of \ccc{PolynomialTraits_d::Degree}.}
\ccNestedType{Total_degree}
{ A model of \ccc{PolynomialTraits_d::TotalDegree}.}
\ccNestedType{Degree_vector}
{ A model of \ccc{PolynomialTraits_d::DegreeVector}.}
\ccNestedType{Leading_coefficient}
{ A model of \ccc{PolynomialTraits_d::LeadingCoefficient}.}
\ccNestedType{Innermost_leading_coefficient}
{A model of \ccc{PolynomialTraits_d::InnermostLeadingCoefficient}.}
\ccNestedType{Canonicalize}
{ A model of \ccc{PolynomialTraits_d::Canonicalize}.}
\ccNestedType{Derive}
{ A model of \ccc{PolynomialTraits_d::Derive}.}
%Evaluation
\ccNestedType{Evaluate}
{ A model of \ccc{PolynomialTraits_d::Evaluate}.}
\ccNestedType{Evaluate_homogeneous}
{ A model of \ccc{PolynomialTraits_d::EvaluateHomogeneous}.}
\ccNestedType{Is_zero_at}
{ A model of \ccc{PolynomialTraits_d::IsZeroAt}.}
\ccNestedType{Is_zero_at_homogeneous}
{ A model of \ccc{PolynomialTraits_d::IsZeroAtHomogeneous}.}
\ccNestedType{Sign_at}{
A model of \ccc{PolynomialTraits_d::SignAt}.
In case \ccc{Innermost_coefficient} is not \ccc{RealEmbeddable} this
is \ccc{CGAL::Null_functor}.}
\ccNestedType{Sign_at_homogeneous}{
A model of \ccc{PolynomialTraits_d::SignHomogeneous}.
In case \ccc{Innermost_coefficient} is not \ccc{RealEmbeddable} this
is \ccc{CGAL::Null_functor}.}
\ccNestedType{Compare}{
A model of \ccc{PolynomialTraits_d::Compare}.
In case \ccc{Innermost_coefficient} is not \ccc{LessThanComparable} this
is \ccc{CGAL::Null_functor}.}
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialToolBox_d}\\
\end{ccRefConcept}