cgal/Mesh_3/include/CGAL/make_mesh_3.h

783 lines
32 KiB
C++

// Copyright (c) 2009 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Stéphane Tayeb
//
//******************************************************************************
// File Description : make_mesh_3 function definition.
//******************************************************************************
#ifndef CGAL_MAKE_MESH_3_H
#define CGAL_MAKE_MESH_3_H
#include <CGAL/license/Mesh_3.h>
#include <CGAL/disable_warnings.h>
#include <CGAL/Mesh_3/config.h>
#include <CGAL/refine_mesh_3.h>
#include <CGAL/tags.h>
#include <CGAL/Mesh_3/Protect_edges_sizing_field.h>
#include <CGAL/Mesh_3/Has_features.h>
#include <CGAL/Mesh_3/C3T3_helpers.h>
#include <boost/mpl/has_xxx.hpp>
#include <atomic>
namespace CGAL {
namespace parameters {
namespace internal {
// Features
struct Features_options
{
Features_options(bool b) : b_(b) {}
bool features() const { return b_; }
private:
bool b_;
};
// -----------------------------------
// Features generator
// -----------------------------------
// struct Features_option_generator
template <typename HasFeatures>
struct Features_options_generator {};
template<>
struct Features_options_generator<CGAL::Tag_true>
{
Features_options operator()() { return Features_options(true); }
};
template<>
struct Features_options_generator<CGAL::Tag_false>
{
Features_options operator()() { return Features_options(false); }
};
// struct Domain_features_generator is designed to handle cases where
// MeshDomain::Has_features is not a valid type
template< typename MeshDomain, bool MeshDomainHasHasFeatures >
struct Domain_features_generator {};
template< typename MeshDomain >
struct Domain_features_generator< MeshDomain, false >
{
Features_options operator()()
{
return Features_options_generator<CGAL::Tag_false>()();
}
};
template< typename MeshDomain >
struct Domain_features_generator< MeshDomain, true >
{
Features_options operator()()
{
return Features_options_generator<typename MeshDomain::Has_features>()();
}
};
} // end namespace internal
// -----------------------------------
// Features_options
// -----------------------------------
inline Named_function_parameters<internal::Features_options, internal_np::features_option_param_t>
features() {
typedef Named_function_parameters<internal::Features_options, internal_np::features_option_param_t> Param;
return Param(internal::Features_options(true));
}
inline Named_function_parameters<internal::Features_options, internal_np::features_option_param_t>
no_features() {
typedef Named_function_parameters<internal::Features_options, internal_np::features_option_param_t> Param;
return Param(internal::Features_options(false)); }
template < typename MeshDomain >
inline Named_function_parameters<internal::Features_options, internal_np::features_option_param_t>
features(const MeshDomain& /*domain*/)
{
typedef typename internal::Domain_features_generator<
MeshDomain,
CGAL::Mesh_3::internal::has_Has_features<MeshDomain>::value > Generator;
typedef Named_function_parameters<internal::Features_options, internal_np::features_option_param_t> Param;
return Param(Generator()());
}
} // end namespace parameters::internal
// -----------------------------------
// Initialize c3t3 stuff
// -----------------------------------
namespace Mesh_3 {
namespace internal {
template < typename C3T3, typename MeshDomain, typename MeshCriteria >
void
init_c3t3(C3T3& c3t3, const MeshDomain& domain, const MeshCriteria&,
const int nb_initial_points)
{
typedef typename MeshDomain::Point_3 Point_3;
typedef typename MeshDomain::Index Index;
typedef std::vector<std::pair<Point_3, Index> > Initial_points_vector;
typedef typename Initial_points_vector::iterator Ipv_iterator;
typedef typename C3T3::Vertex_handle Vertex_handle;
// Mesh initialization : get some points and add them to the mesh
Initial_points_vector initial_points;
if (nb_initial_points > -1)
domain.construct_initial_points_object()(std::back_inserter(initial_points),
nb_initial_points);
else //use default number of points
domain.construct_initial_points_object()(std::back_inserter(initial_points));
typename C3T3::Triangulation::Geom_traits::Construct_weighted_point_3 cwp =
c3t3.triangulation().geom_traits().construct_weighted_point_3_object();
// Insert points and set their index and dimension
for ( Ipv_iterator it = initial_points.begin() ;
it != initial_points.end() ;
++it )
{
Vertex_handle v = c3t3.triangulation().insert(cwp(it->first));
// v could be null if point is hidden
if ( v != Vertex_handle() )
{
c3t3.set_dimension(v,2); // by construction, points are on surface
c3t3.set_index(v,it->second);
}
}
}
template < typename EdgeCriteria >
struct Edge_criteria_sizing_field_wrapper
{
typedef typename EdgeCriteria::Index Index;
typedef typename EdgeCriteria::FT FT;
typedef typename EdgeCriteria::Point_3 Point_3;
Edge_criteria_sizing_field_wrapper(const EdgeCriteria& ec) : ec_(ec) {}
FT operator()(const Point_3& p, const int dim, const Index& index) const
{ return ec_.sizing_field(p,dim,index); }
private:
// No need to copy EdgeCriteria here
const EdgeCriteria& ec_;
};
template < typename C3T3, typename MeshDomain, typename MeshCriteria>
void init_c3t3_with_features(C3T3& c3t3,
const MeshDomain& domain,
const MeshCriteria& criteria,
bool nonlinear = false,
std::size_t maximal_number_of_vertices = 0,
Mesh_error_code* pointer_to_error_code = 0
#ifndef CGAL_NO_ATOMIC
, std::atomic<bool>* pointer_to_stop = 0
#endif
)
{
typedef typename MeshCriteria::Edge_criteria Edge_criteria;
typedef Edge_criteria_sizing_field_wrapper<Edge_criteria> Sizing_field;
CGAL::Mesh_3::Protect_edges_sizing_field<C3T3,MeshDomain,Sizing_field>
protect_edges(c3t3,
domain,
Sizing_field(criteria.edge_criteria_object()),
typename Edge_criteria::FT(),
maximal_number_of_vertices,
pointer_to_error_code
#ifndef CGAL_NO_ATOMIC
, pointer_to_stop
#endif
);
protect_edges.set_nonlinear_growth_of_balls(nonlinear);
protect_edges(true);
}
// This class is only used as base for specializations of C3t3_initializer
// when MeshDomain::Has_features is a valid type and is defined to CGAL::Tag_true
//
// Its purpose is to make the protection process virtual because Periodic_3_mesh_3
// handles sharp features differently and has its own 'init_c3t3_with_features()' function,
// but everything else is identical.
template < typename C3T3, typename MeshDomain, typename MeshCriteria>
struct C3t3_initializer_base
{
virtual ~C3t3_initializer_base() { }
// Not calling 'init_c3t3_with_features' directly to leave it as a free function
// outside of the C3T3_initializer class
virtual void
initialize_features(C3T3& c3t3,
const MeshDomain& domain,
const MeshCriteria& criteria,
const parameters::internal::Mesh_3_options& mesh_options)
{
return Mesh_3::internal::init_c3t3_with_features
(c3t3, domain, criteria,
mesh_options.nonlinear_growth_of_balls,
mesh_options.maximal_number_of_vertices,
mesh_options.pointer_to_error_code
#ifndef CGAL_NO_ATOMIC
, mesh_options.pointer_to_stop_atomic_boolean
#endif
);
}
};
// C3t3_initializer: initialize c3t3
template < typename C3T3,
typename MeshDomain,
typename MeshCriteria,
bool MeshDomainHasHasFeatures,
typename HasFeatures = int>
struct C3t3_initializer { };
// Partial specialization of C3t3_initializer
// Handle cases where MeshDomain::Has_features is not a valid type
template < typename C3T3, typename MD, typename MC, typename HasFeatures >
struct C3t3_initializer < C3T3, MD, MC, false, HasFeatures >
{
typedef parameters::internal::Mesh_3_options Mesh_3_options;
void operator()(C3T3& c3t3,
const MD& domain,
const MC& criteria,
bool with_features,
Mesh_3_options mesh_options = Mesh_3_options())
{
if ( with_features )
{
std::cerr << "Warning: you requested a mesh with features from a domain"
<< " without features !" << std::endl;
}
init_c3t3(c3t3,domain,criteria,
mesh_options.number_of_initial_points);
}
};
// Partial specialization of C3t3_initializer
// Handles cases where MeshDomain::Has_features is a valid type
template < typename C3T3, typename MD, typename MC, typename HasFeatures >
struct C3t3_initializer < C3T3, MD, MC, true, HasFeatures >
{
typedef parameters::internal::Mesh_3_options Mesh_3_options;
void operator()(C3T3& c3t3,
const MD& domain,
const MC& criteria,
bool with_features,
Mesh_3_options mesh_options = Mesh_3_options())
{
C3t3_initializer < C3T3, MD, MC, true, typename MD::Has_features >()
(c3t3,domain,criteria,with_features,mesh_options);
}
};
// Partial specialization of C3t3_initializer
// Handles cases where MeshDomain::Has_features is a valid type and is defined
// to CGAL::Tag_true
template < typename C3T3, typename MD, typename MC >
struct C3t3_initializer < C3T3, MD, MC, true, CGAL::Tag_true >
: public C3t3_initializer_base < C3T3, MD, MC >
{
virtual ~C3t3_initializer() { }
typedef parameters::internal::Mesh_3_options Mesh_3_options;
void operator()(C3T3& c3t3,
const MD& domain,
const MC& criteria,
bool with_features,
Mesh_3_options mesh_options = Mesh_3_options())
{
if ( with_features ) {
this->initialize_features(c3t3, domain, criteria,mesh_options);
// If c3t3 initialization is not sufficient (may happen if there is only
// a planar curve as feature for example), add some surface points
bool need_more_init = c3t3.triangulation().dimension() != 3;
if(!need_more_init) {
CGAL::Mesh_3::C3T3_helpers<C3T3, MD> helper(c3t3, domain);
helper.update_restricted_facets();
if (c3t3.number_of_facets() == 0) {
need_more_init = true;
}
}
if(need_more_init) {
init_c3t3(c3t3, domain, criteria,
mesh_options.number_of_initial_points);
}
}
else { init_c3t3(c3t3,domain,criteria,
mesh_options.number_of_initial_points); }
}
};
// Partial specialization of C3t3_initializer
// Handles cases where MeshDomain::Has_features is a valid type and is defined
// to CGAL::Tag_false
template < typename C3T3, typename MD, typename MC >
struct C3t3_initializer < C3T3, MD, MC, true, CGAL::Tag_false >
{
typedef parameters::internal::Mesh_3_options Mesh_3_options;
void operator()(C3T3& c3t3,
const MD& domain,
const MC& criteria,
bool with_features,
Mesh_3_options mesh_options = Mesh_3_options())
{
if ( with_features )
{
std::cerr << "Warning: you requested a mesh with features from a domain"
<< " without features !" << std::endl;
}
init_c3t3(c3t3,domain,criteria,
mesh_options.number_of_initial_points);
}
};
} // end namespace internal
} // end namespace Mesh_3
// -----------------------------------
// make_mesh_3 stuff
// -----------------------------------
/*!
\ingroup PkgMesh3Functions
The function `make_mesh_3()` is a 3D
mesh generator. It produces simplicial meshes which discretize
3D domains.
The mesh generation algorithm is a Delaunay refinement process
followed by an optimization phase.
The criteria driving the Delaunay refinement
process may be tuned to achieve the user needs with respect to
the size of mesh elements, the accuracy of boundaries approximation,
etc.
The optimization phase is a sequence of optimization processes,
amongst the following available optimizers: an ODT-smoothing,
a Lloyd-smoothing, a sliver perturber, and a sliver exuder.
Each optimization process
can be activated or not,
according to the user requirements
and available time.
By default, only the perturber and the exuder are activated.
Note that the benefits of the exuder will be lost if the mesh
is further refined afterward, and that ODT-smoothing, Lloyd-smoothing,
and sliver perturber should never be called after the sliver exuder.
In the case of further refinement, only the sliver exuder can be used.
The function outputs the mesh to an object which provides iterators to
traverse the resulting mesh data structure or can be written to a file
(see \ref Mesh_3_section_examples ).
\tparam C3T3 is required to be a model of
the concept `MeshComplex_3InTriangulation_3`. This is the return type.
The type `C3T3` is in particular required to provide a nested type
`C3T3::Triangulation` for the 3D triangulation
embedding the mesh. The vertex and cell base classes of the
triangulation `C3T3::Triangulation` are required to be models of the
concepts `MeshVertexBase_3` and `MeshCellBase_3`
respectively.
\tparam MD is required to be a model of
the concept `MeshDomain_3`, or of the refined concept
`MeshDomainWithFeatures_3`
if the domain has corners and curves that need to be accurately represented in the mesh.
The argument `domain`
is the sole link through which the domain
to be discretized is known by the mesh generation algorithm.
\tparam MC has to be a model of the concept
`MeshCriteria_3`, or a model of the refined concept `MeshCriteriaWithFeatures_3` if the domain has exposed features.
The argument `criteria` of type `MC` specifies the
size and shape requirements for mesh tetrahedra
and surface facets. These criteria
form the rules which drive the refinement process. All mesh elements
satisfy those criteria at the end of the refinement process.
In addition, if the domain has features, the argument
`criteria` provides a sizing field to guide the discretization
of 1-dimensional exposed features.
\tparam NamedParameters a sequence of \ref bgl_namedparameters "Named Parameters"
\cgalNamedParamsBegin
\cgalParamNBegin{features_param}
\cgalParamDescription{allows the user to specify whether 0 and 1-dimensional features have to be
taken into account or not
when the domain is a model of `MeshDomainWithFeatures_3`.
The type `Features` of this parameter is an internal undescribed type.
The library provides functions to construct appropriate values of that type.
<UL>
<LI>\link parameters::features() `parameters::features(domain)` \endlink sets `features` according to the domain,
i.e.\ 0 and 1-dimensional features are taken into account if `domain` is a
`MeshDomainWithFeatures_3`. This is the default behavior
if parameter `features` is not specified.
<LI>`parameters::no_features()` prevents the representation
of 0 and 1-dimensional features in the mesh.
</UL>}
\cgalParamType{`parameters::features()' OR `parameters::features(domain)`}
\cgalParamDefault{`parameters::features(domain)`}
\cgalParamNBegin{manifold_options_param}
\cgalParamDescription{allows the user to drive the meshing algorithm,
and ensure that the output mesh surface follows the given manifold criterion.
It can be activated with `parameters::manifold()`, `parameters::manifold_with_boundary()`
and `parameters::non_manifold()`. Note that the meshing algorithm cannot generate a manifold
surface if the input surface is not manifold.}
\cgalParamType{`parameters::manifold()` OR `parameters::manifold_with_boundary()` OR `parameters::non_manifold()`}
\cgalParamDefault{`parameters::non_manifold()`}
\cgalParamNBegin{lloyd_param}
\cgalParamDescription{`parameters::lloyd()` and `parameters::no_lloyd()` are designed to
trigger or not a call to `lloyd_optimize_mesh_3()` function and to set the
parameters of this optimizer. If one parameter is not set, the default value of
`lloyd_optimize_mesh_3()` is used for this parameter.}
\cgalParamType{`parameters::lloyd()` OR `parameters::no_lloyd()`}
\cgalParamDefault{`parameters::no_lloyd()`}
\cgalParamNBegin{odt_param}
\cgalParamDescription{`parameters::odt()` and `parameters::no_odt()` are designed to
trigger or not a call to `odt_optimize_mesh_3()` function and
to set the parameters of this optimizer.
If one parameter is not set, the default value of
`odt_optimize_mesh_3()` is used for this parameter.}
\cgalParamType{`parameters::odt()` OR `parameters::no_odt()`}
\cgalParamDefault{`parameters::no_odt()`}
\cgalParamNBegin{perturb_param}
\cgalParamDescription{`parameters::perturb()` and `parameters::no_perturb()` are designed to
trigger or not a call to `perturb_mesh_3()` function and
to set the parameters of this optimizer. If one parameter is not set, the default value of
`perturb_mesh_3()` is used for this parameter, except for the time bound which is set to be
equal to the refinement CPU time.}
\cgalParamType{`parameters::perturb()` and `parameters::no_perturb()`}
\cgalParamDefault{`parameters::no_perturb`}
\cgalParamNBegin{exude_param}
\cgalParamDescription{parameters::exude()` and `parameters::no_exude()` are designed to
trigger or not a call to `exude_mesh_3()` function and to override to set the
parameters of this optimizer. If one parameter is not set, the default value of
`exude_mesh_3()` is used for this parameter, except for the time bound which is set to be
equal to the refinement CPU time.}
\cgalParamType{`parameters::exude()` and `parameters::no_exude()`}
\cgalParamDefault{`parameters::no_exude`}
\cgalNamedParamsEnd
The optimization parameters can be passed in an arbitrary order. If one parameter
is not passed, its default value is used. The default values are
`no_lloyd()`, `no_odt()`, `perturb()` and `exude()`.
Note that whatever may be the optimization processes activated,
they are always launched in the order that is a suborder
of the following (see user manual for further
details): *ODT-smoother*, *Lloyd-smoother*, *perturber*, and *exuder*.
Beware that optimization of the mesh is obtained
by perturbing mesh vertices and modifying the mesh connectivity
and that this has an impact
on the strict compliance to the refinement criteria.
Though a strict compliance to mesh criteria
is guaranteed at the end of the Delaunay refinement, this may no longer be true after
some optimization processes. Also beware that the default behavior does involve some
optimization processes.
\sa `refine_mesh_3()`
\sa `parameters::features()`
\sa `parameters::no_features()`
\sa `parameters::manifold()`
\sa `parameters::manifold_with_boundary()`
\sa `parameters::non_manifold()`
\sa `exude_mesh_3()`
\sa `perturb_mesh_3()`
\sa `lloyd_optimize_mesh_3()`
\sa `odt_optimize_mesh_3()`
\sa `parameters::exude()`
\sa `parameters::no_exude()`
\sa `parameters::perturb()`
\sa `parameters::no_perturb()`
\sa `parameters::lloyd()`
\sa `parameters::no_lloyd()`
\sa `parameters::odt()`
\sa `parameters::no_odt()`
*/
template<typename C3T3, typename MeshDomain, typename MeshCriteria, typename CGAL_NP_TEMPLATE_PARAMETERS>
C3T3 make_mesh_3(MeshDomain& domain, MeshCriteria& criteria, const CGAL_NP_CLASS& np = parameters::default_values())
{
using parameters::choose_parameter;
using parameters::get_parameter;
C3T3 c3t3;
parameters::internal::Exude_options exude_param = choose_parameter(get_parameter(np, internal_np::exude_options_param), parameters::exude().v);
parameters::internal::Perturb_options perturb_param = choose_parameter(get_parameter(np, internal_np::perturb_options_param), parameters::perturb().v);
parameters::internal::Odt_options odt_param = choose_parameter(get_parameter(np, internal_np::odt_options_param), parameters::no_odt().v);
parameters::internal::Lloyd_options lloyd_param = choose_parameter(get_parameter(np, internal_np::lloyd_options_param), parameters::no_lloyd().v);
parameters::internal::Features_options features_param = choose_parameter(get_parameter(np, internal_np::features_options_param), parameters::features(domain).v);
parameters::internal::Mesh_3_options mesh_options_param = choose_parameter(get_parameter(np, internal_np::mesh_param), parameters::internal::Mesh_3_options());
parameters::internal::Manifold_options manifold_options_param = choose_parameter(get_parameter(np, internal_np::manifold_param), parameters::internal::Manifold_options());
make_mesh_3_impl(c3t3, domain, criteria,
exude_param, perturb_param, odt_param, lloyd_param,
features_param.features(), mesh_options_param,
manifold_options_param);
return c3t3;
}
#ifndef DOXYGEN_RUNNING
#ifndef CGAL_NO_DEPRECATED_CODE
template<typename C3T3, typename MeshDomain, typename MeshCriteria, typename ... NP_PACK>
C3T3 make_mesh_3(MeshDomain& domain, MeshCriteria& criteria, const NP_PACK&...nps)
{
return make_mesh_3<C3T3>(domain, criteria, internal_np::combine_named_parameters(nps...));
}
#endif //CGAL_NO_DEPRECATED_CODE
/**
* @brief This function meshes the domain defined by mesh_traits
* (respecting criteria), and outputs the mesh to c3t3
*
* @param domain the domain to be discretized
* @param criteria the criteria
* @param exude if it is set to \c true, an exudation step will be done at
* the end of the Delaunay refinement process
*
* @return The mesh as a C3T3 object
*/
template<class C3T3, class MeshDomain, class MeshCriteria>
void make_mesh_3_impl(C3T3& c3t3,
const MeshDomain& domain,
const MeshCriteria& criteria,
const parameters::internal::Exude_options& exude,
const parameters::internal::Perturb_options& perturb,
const parameters::internal::Odt_options& odt,
const parameters::internal::Lloyd_options& lloyd,
const bool with_features,
const parameters::internal::Mesh_3_options&
mesh_options = parameters::internal::Mesh_3_options(),
const parameters::internal::Manifold_options&
manifold_options = parameters::internal::Manifold_options())
{
#ifdef CGAL_MESH_3_INITIAL_POINTS_NO_RANDOM_SHOOTING
CGAL::get_default_random() = CGAL::Random(0);
#endif
// Initialize c3t3
Mesh_3::internal::C3t3_initializer<
C3T3,
MeshDomain,
MeshCriteria,
Mesh_3::internal::has_Has_features<MeshDomain>::value > () (c3t3,
domain,
criteria,
with_features,
mesh_options);
CGAL_assertion( c3t3.triangulation().dimension() >= 2 );
// Build mesher and launch refinement process
// Don't reset c3t3 as we just created it
refine_mesh_3(c3t3, domain, criteria,
parameters::exude_param=exude, parameters::perturb_param=perturb, parameters::odt_param=odt, parameters::lloyd_param= lloyd,
parameters::no_reset_c3t3(), parameters::mesh_options_param= mesh_options,
parameters::manifold_options_param= manifold_options);
}
#else
namespace CGAL {
/*!
\ingroup PkgMesh3Functions
\deprecated This function is deprecated since \cgal 5.5, the overload using `NamedParameters` must be used instead.
The function `make_mesh_3()` is a 3D
mesh generator. It produces simplicial meshes which discretize
3D domains.
The mesh generation algorithm is a Delaunay refinement process
followed by an optimization phase.
The criteria driving the Delaunay refinement
process may be tuned to achieve the user needs with respect to
the size of mesh elements, the accuracy of boundaries approximation,
etc.
The optimization phase is a sequence of optimization processes,
amongst the following available optimizers: an ODT-smoothing,
a Lloyd-smoothing, a sliver perturber, and a sliver exuder.
Each optimization process
can be activated or not,
according to the user requirements
and available time.
By default, only the perturber and the exuder are activated.
Note that the benefits of the exuder will be lost if the mesh
is further refined afterward, and that ODT-smoothing, Lloyd-smoothing,
and sliver perturber should never be called after the sliver exuder.
In the case of further refinement, only the sliver exuder can be used.
The function outputs the mesh to an object which provides iterators to
traverse the resulting mesh data structure or can be written to a file
(see \ref Mesh_3_section_examples ).
\tparam C3T3 is required to be a model of
the concept `MeshComplex_3InTriangulation_3`. This is the return type.
The type `C3T3` is in particular required to provide a nested type
`C3T3::Triangulation` for the 3D triangulation
embedding the mesh. The vertex and cell base classes of the
triangulation `C3T3::Triangulation` are required to be models of the
concepts `MeshVertexBase_3` and `MeshCellBase_3`
respectively.
\tparam MD is required to be a model of
the concept `MeshDomain_3`, or of the refined concept
`MeshDomainWithFeatures_3`
if the domain has corners and curves that need to be accurately represented in the mesh.
The argument `domain`
is the sole link through which the domain
to be discretized is known by the mesh generation algorithm.
\tparam MC has to be a model of the concept
`MeshCriteria_3`, or a model of the refined concept `MeshCriteriaWithFeatures_3` if the domain has exposed features.
The argument `criteria` of type `MC` specifies the
size and shape requirements for mesh tetrahedra
and surface facets. These criteria
form the rules which drive the refinement process. All mesh elements
satisfy those criteria at the end of the refinement process.
In addition, if the domain has features, the argument
`criteria` provides a sizing field to guide the discretization
of 1-dimensional exposed features.
\cgalHeading{Named Parameters}
- <b>`features`</b> allows
the user to specify whether 0 and 1-dimensional features have to be
taken into account or not
when the domain is a model of `MeshDomainWithFeatures_3`.
The type `Features` of this parameter is an internal undescribed type.
The library provides functions to construct appropriate values of that type.
<UL>
<LI>\link parameters::features() `parameters::features(domain)` \endlink sets `features` according to the domain,
i.e.\ 0 and 1-dimensional features are taken into account if `domain` is a
`MeshDomainWithFeatures_3`. This is the default behavior
if parameter `features` is not specified.
<LI>`parameters::no_features()` prevents the representation
of 0 and 1-dimensional features in the mesh.
</UL>
- <b>`manifold`</b> allows the user to drive the meshing algorithm,
and ensure that the output mesh surface follows the given manifold criterion.
It can be activated with `parameters::manifold()`, `parameters::manifold_with_boundary()`
and `parameters::non_manifold()`. Note that the meshing algorithm cannot generate a manifold
surface if the input surface is not manifold.
The four additional parameters are optimization parameters.
They control which optimization processes are performed
and allow the user to tune the parameters of the optimization processes.
Individual optimization parameters are not described here as they are
internal types (see instead the documentation page of each optimizer).
For each optimization algorithm, there exist two global functions
that allow to enable or disable the optimizer:
- <b>`lloyd`</b>: `parameters::lloyd()` and `parameters::no_lloyd()` are designed to
trigger or not a call to `lloyd_optimize_mesh_3()` function and to set the
parameters of this optimizer. If one parameter is not set, the default value of
`lloyd_optimize_mesh_3()` is used for this parameter.
- <b>`ODT`</b>: `parameters::odt()` and `parameters::no_odt()` are designed to
trigger or not a call to `odt_optimize_mesh_3` function and
to set the parameters of this optimizer.
If one parameter is not set, the default value of
`odt_optimize_mesh_3()` is used for this parameter.
- <b>`perturb`</b>: `parameters::perturb()` and `parameters::no_perturb()` are designed to
trigger or not a call to `perturb_mesh_3` function and
to set the parameters of this optimizer. If one parameter is not set, the default value of
`CGAL::perturb_mesh_3` is used for this parameter, except for the time bound which is set to be
equal to the refinement CPU time.
- <b>`exude`</b>: `parameters::exude()` and `parameters::no_exude()` are designed to
trigger or not a call to `exude_mesh_3()` function and to override to set the
parameters of this optimizer. If one parameter is not set, the default value of
`exude_mesh_3()` is used for this parameter, except for the time bound which is set to be
equal to the refinement CPU time.
The optimization parameters can be passed in an arbitrary order. If one parameter
is not passed, its default value is used. The default values are
`no_lloyd()`, `no_odt()`, `perturb()` and `exude()`.
Note that whatever may be the optimization processes activated,
they are always launched in the order that is a suborder
of the following (see user manual for further
details): *ODT-smoother*, *Lloyd-smoother*, *perturber*, and *exuder*.
Beware that optimization of the mesh is obtained
by perturbing mesh vertices and modifying the mesh connectivity
and that this has an impact
on the strict compliance to the refinement criteria.
Though a strict compliance to mesh criteria
is guaranteed at the end of the Delaunay refinement, this may no longer be true after
some optimization processes. Also beware that the default behavior does involve some
optimization processes.
\sa `refine_mesh_3()`
\sa `parameters::features()`
\sa `parameters::no_features()`
\sa `parameters::manifold()`
\sa `parameters::manifold_with_boundary()`
\sa `parameters::non_manifold()`
\sa `exude_mesh_3()`
\sa `perturb_mesh_3()`
\sa `lloyd_optimize_mesh_3()`
\sa `odt_optimize_mesh_3()`
\sa `parameters::exude()`
\sa `parameters::no_exude()`
\sa `parameters::perturb()`
\sa `parameters::no_perturb()`
\sa `parameters::lloyd()`
\sa `parameters::no_lloyd()`
\sa `parameters::odt()`
\sa `parameters::no_odt()`
*/
template <class C3T3, class MD, class MC>
C3T3 make_mesh_3(const MD& domain,
const MC& criteria,
parameters::internal::Features_options features = parameters::features(domain),
parameters::internal::Lloyd_options lloyd = parameters::no_lloyd(),
parameters::internal::Odt_options odt = parameters::no_odt(),
parameters::internal::Perturb_options perturb = parameters::perturb(),
parameters::internal::Exude_options exude = parameters::exude(),
parameters::internal::Manifold_options manifold = parameters::non_manifold());
} /* namespace CGAL */
#endif //DOXYGEN_RUNNING
} // end namespace CGAL
#endif // CGAL_MAKE_MESH_3_H