cgal/Generator/include/CGAL/point_generators_3.h

201 lines
6.2 KiB
C++

// Copyright (c) 1997
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Lutz Kettner <kettner@inf.ethz.ch>
#ifndef CGAL_POINT_GENERATORS_3_H
#define CGAL_POINT_GENERATORS_3_H 1
#include <CGAL/generators.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/number_type_basic.h>
namespace CGAL {
template < class P, class Creator =
Creator_uniform_3<typename Kernel_traits<P>::Kernel::RT,P> >
class Random_points_in_sphere_3 : public Random_generator_base<P> {
void generate_point();
public:
typedef Random_points_in_sphere_3<P,Creator> This;
Random_points_in_sphere_3( double r = 1, Random& rnd = CGAL::get_default_random())
// g is an input iterator creating points of type `P' uniformly
// distributed in the open sphere with radius r, i.e. |`*g'| < r .
// Three random numbers are needed from `rnd' for each point
: Random_generator_base<P>( r, rnd) { generate_point(); }
This& operator++() {
generate_point();
return *this;
}
This operator++(int) {
This tmp = *this;
++(*this);
return tmp;
}
};
template < class P, class Creator >
void
Random_points_in_sphere_3<P,Creator>::
generate_point() {
// A strip between z and z+dz has an area independant of z
typedef typename Creator::argument_type T;
double alpha = this->_rnd.get_double() * 2.0 * CGAL_PI;
double z = 2 * this->_rnd.get_double() - 1.0;
double r = std::sqrt( 1 - z * z);
r *= std::pow( this->_rnd.get_double() , 1.0/3.0 );
Creator creator;
this->d_item = creator( T(this->d_range * r * std::cos(alpha)),
T(this->d_range * r * std::sin(alpha)),
T(this->d_range * z));
}
template < class P, class Creator =
Creator_uniform_3<typename Kernel_traits<P>::Kernel::RT,P> >
class Random_points_on_sphere_3 : public Random_generator_base<P> {
void generate_point();
public:
typedef Random_points_on_sphere_3<P,Creator> This;
Random_points_on_sphere_3( double r = 1, Random& rnd = CGAL::get_default_random())
// g is an input iterator creating points of type `P' uniformly
// distributed on the sphere with radius r, i.e. |`*g'| == r . A
// two random numbers are needed from `rnd' for each point.
: Random_generator_base<P>( r, rnd) { generate_point(); }
This& operator++() {
generate_point();
return *this;
}
This operator++(int) {
This tmp = *this;
++(*this);
return tmp;
}
};
template < class P, class Creator >
void
Random_points_on_sphere_3<P,Creator>::
generate_point() {
// A strip between z and z+dz has an area independant of z
typedef typename Creator::argument_type T;
double alpha = this->_rnd.get_double() * 2.0 * CGAL_PI;
double z = 2 * this->_rnd.get_double() - 1.0;
double r = std::sqrt( 1 - z * z);
Creator creator;
this->d_item = creator( T(this->d_range * r * std::cos(alpha)),
T(this->d_range * r * std::sin(alpha)),
T(this->d_range * z));
}
template < class P, class Creator =
Creator_uniform_3<typename Kernel_traits<P>::Kernel::RT,P> >
class Random_points_in_cube_3 : public Random_generator_base<P>{
void generate_point();
public:
typedef Random_points_in_cube_3<P,Creator> This;
Random_points_in_cube_3( double a = 1, Random& rnd = CGAL::get_default_random())
: Random_generator_base<P>( a, rnd) { generate_point(); }
This& operator++() {
generate_point();
return *this;
}
This operator++(int) {
This tmp = *this;
++(*this);
return tmp;
}
};
template < class P, class Creator >
void
Random_points_in_cube_3<P,Creator>::
generate_point() {
typedef typename Creator::argument_type T;
Creator creator;
this->d_item =
creator( T(this->d_range * ( 2 * this->_rnd.get_double() - 1.0)),
T(this->d_range * ( 2 * this->_rnd.get_double() - 1.0)),
T(this->d_range * ( 2 * this->_rnd.get_double() - 1.0)));
}
template <class OutputIterator, class Creator>
OutputIterator
points_on_cube_grid_3( double a, std::size_t n,
OutputIterator o, Creator creator)
{
if (n == 0)
return o;
int m = int(std::ceil(
std::sqrt(std::sqrt(static_cast<double>(n)))));
while (m*m*m < int(n)) m++;
double base = -a; // Left and bottom boundary.
double step = 2*a/(m-1);
int j = 0;
int k = 0;
double px = base;
double py = base;
double pz = base;
*o++ = creator( px, py, pz);
for (std::size_t i = 1; i < n; i++) {
j++;
if ( j == m) {
k++;
if ( k == m) {
py = base;
px = base;
pz = pz + step;
k = 0;
}
else {
px = base;
py = py + step;
}
j = 0;
} else {
px = px + step;
}
*o++ = creator( px, py, pz);
}
return o;
}
template <class OutputIterator>
OutputIterator
points_on_cube_grid_3( double a, std::size_t n, OutputIterator o)
{
typedef std::iterator_traits<OutputIterator> ITraits;
typedef typename ITraits::value_type P;
return points_on_square_grid_3(a, n, o,
Creator_uniform_3<typename Kernel_traits<P>::Kernel::RT,P>());
}
} //namespace CGAL
#endif // CGAL_POINT_GENERATORS_3_H //
// EOF //