cgal/Modular_arithmetic/test/Modular_arithmetic/Residue.cpp

118 lines
2.9 KiB
C++

// Author(s) : Michael Hemmer <mhemmer@uni-mainz.de>
/*! \file CGAL/Residue.C
test for number type module
*/
#include <CGAL/config.h>
#include <cassert>
#include <CGAL/Residue.h>
#include <CGAL/FPU.h>
#include <CGAL/Modular_traits.h>
#include <CGAL/Test/_test_algebraic_structure.h>
#include <CGAL/number_utils.h>
int main()
{
// Enforce IEEE double precision and rounding mode to nearest
CGAL::Protect_FPU_rounding<true> pfr(CGAL_FE_TONEAREST);
typedef CGAL::Residue NT;
typedef CGAL::Field_tag Tag;
typedef CGAL::Tag_true Is_exact;
CGAL::test_algebraic_structure<NT,Tag, Is_exact>();
int old_prime = NT::get_current_prime();
assert(old_prime == NT::set_current_prime(7));
assert(7 == NT::get_current_prime());
NT x(4),y(5),z(12),t;
// operator ==
assert(!(x==y));
assert(y==z);
// operator !=
assert(x!=y);
assert(!(z!=y));
// constructor
assert(NT(2)==NT(2-5*NT::get_current_prime()));
assert(NT(2)==NT(2+5*NT::get_current_prime()));
// operator unary +
assert((+x)==x);
// operator unary -
assert(-x==x*NT(-1));
// operator binary +
assert((x+y)==NT(2));
// operator binary -
assert((x-y)==NT(6));
// operator *
assert((x*y)==NT(6));
// operator /
assert((x/y)==NT(5));
// operator +=
t=x; assert((x+y)==(t+=y));
// operator -=
t=x; assert((x-y)==(t-=y));
// operator *=
t=x; assert((x*y)==(t*=y));
// operator /=
t=x; assert((x/y)==(t/=y));
// left/right Hand
// operator ==
assert(x==4);
assert(5==y);
// operator !=
assert(x!=5);
assert(4!=y);
// operator +
t=x; assert((x+5)==(5+x));
// operator -
t=x; assert((x-5)==(4-y));
// operator *
t=x; assert((x*5)==(5*x));
// operator =
t=x; assert((x/5)==(4/y));
//cout << x << endl;
assert(7 == NT::set_current_prime(old_prime));
typedef long Integer;
Integer int_x(7);
Integer prime(NT::get_current_prime());
CGAL::Residue mod_x(7);
for(int i = 0; i < 10000; i++){
assert(mod_x == CGAL::modular_image(int_x));
int_x *= int_x; int_x = CGAL::mod(int_x, prime);
mod_x *= mod_x;
assert(mod_x == CGAL::modular_image(int_x));
int_x += int_x; int_x = CGAL::mod(int_x, prime);
mod_x += mod_x;
assert(mod_x == CGAL::modular_image(int_x));
assert(mod_x == CGAL::modular_image(int_x));
int_x *= int_x; int_x = CGAL::mod(int_x, prime);
mod_x *= mod_x;
assert(mod_x == CGAL::modular_image(int_x));
int_x -= int_x; int_x = CGAL::mod(int_x, prime);
mod_x -= (CGAL::Residue&)mod_x;
}
{
CGAL::Residue::set_current_prime(67111043);
CGAL::Residue x(-33546401);
CGAL::Residue y(23950928);
CGAL::Residue q = CGAL::integral_division(x,y);
assert(x == q*y);
}
}