cgal/Kernel_d/include/CGAL/Kernel_d/function_objectsCd.h

466 lines
13 KiB
C++

// Copyright (c) 2000,2001 Utrecht University (The Netherlands),
// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),
// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg
// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Michael Seel, Kurt Mehlhorn
#ifndef CGAL_FUNCTION_OBJECTSCD_H
#define CGAL_FUNCTION_OBJECTSCD_H
#include <CGAL/basic.h>
#include <CGAL/enum.h>
#undef CGAL_KD_TRACE
#undef CGAL_KD_TRACEN
#undef CGAL_KD_TRACEV
#define CGAL_KD_TRACE(t) std::cerr << t
#define CGAL_KD_TRACEN(t) std::cerr << t << std::endl
#define CGAL_KD_TRACEV(t) std::cerr << #t << " = " << (t) << std::endl
CGAL_BEGIN_NAMESPACE
template <class R>
struct Lift_to_paraboloidCd {
typedef typename R::Point_d Point_d;
typedef typename R::FT FT;
typedef typename R::LA LA;
Point_d operator()(const Point_d& p) const
{
int d = p.dimension();
typename LA::Vector h(d+1);
FT sum = 0;
for (int i = 0; i<d; i++) {
h[i] = p.cartesian(i);
sum += h[i]*h[i];
}
h[d] = sum;
return Point_d(d+1,h.begin(),h.end());
}
};
template <class R>
struct Project_along_d_axisCd {
typedef typename R::Point_d Point_d;
typedef typename R::FT FT;
Point_d operator()(const Point_d& p) const
{ return Point_d(p.dimension()-1,
p.cartesian_begin(),p.cartesian_end()-1); }
};
template <class R>
struct MidpointCd {
typedef typename R::Point_d Point_d;
Point_d operator()(const Point_d& p, const Point_d& q) const
{ return Point_d(p + (q-p)/2); }
};
template <class R>
struct Center_of_sphereCd {
typedef typename R::Point_d Point_d;
typedef typename R::FT FT;
typedef typename R::LA LA;
template <class Forward_iterator>
Point_d operator()(Forward_iterator start, Forward_iterator end) const
{ CGAL_assertion(start!=end);
int d = start->dimension();
typename LA::Matrix M(d);
typename LA::Vector b(d);
Point_d pd = *start++;
for (int i = 0; i < d; i++) {
// we set up the equation for p_i
Point_d pi = *start++;
b[i] = 0;
for (int j = 0; j < d; j++) {
M(i,j) = FT(2)*(pi.cartesian(j) - pd.cartesian(j));
b[i] += (pi.cartesian(j) - pd.cartesian(j)) *
(pi.cartesian(j) + pd.cartesian(j));
}
}
FT D;
typename LA::Vector x;
LA::linear_solver(M,b,x,D);
return Point_d(d,x.begin(),x.end());
}
}; // Center_of_sphereCd
template <class R>
struct Squared_distanceCd {
typedef typename R::Point_d Point_d;
typedef typename R::Vector_d Vector_d;
typedef typename R::FT FT;
FT operator()(const Point_d& p, const Point_d& q) const
{ Vector_d v = p-q; return v.squared_length(); }
};
template <class R>
struct Position_on_lineCd {
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
typedef typename R::FT FT;
bool operator()(const Point_d& p, const Point_d& s, const Point_d& t,
FT& l) const
{ int d = p.dimension();
CGAL_assertion_msg((d==s.dimension())&&(d==t.dimension()&& d>0),
"position_along_line: argument dimensions disagree.");
CGAL_assertion_msg((s!=t),
"Position_on_line_d: line defining points are equal.");
FT lnum = (p.cartesian(0) - s.cartesian(0));
FT lden = (t.cartesian(0) - s.cartesian(0));
FT num(lnum), den(lden), lnum_i, lden_i;
for (int i = 1; i < d; i++) {
lnum_i = (p.cartesian(i) - s.cartesian(i));
lden_i = (t.cartesian(i) - s.cartesian(i));
if (lnum*lden_i != lnum_i*lden) return false;
if (lden_i != FT(0)) { den = lden_i; num = lnum_i; }
}
l = num/den; return true;
}
};
template <class R>
struct Barycentric_coordinatesCd {
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
typedef typename R::FT FT;
template <class ForwardIterator, class OutputIterator>
OutputIterator operator()(ForwardIterator first, ForwardIterator last,
const Point_d& p, OutputIterator result)
{ TUPLE_DIM_CHECK(first,last,Barycentric_coordinates_d);
int n = std::distance(first,last);
int d = p.dimension();
typename R::Affine_rank_d affine_rank;
CGAL_assertion(affine_rank(first,last)==d);
std::vector< Point_d > V(first,last);
typename LA::Matrix M(d+1,V.size());
typename LA::Vector b(d+1), x;
int i;
for (i=0; i<d; ++i) {
for (int j=0; j<V.size(); ++j)
M(i,j)=V[j].cartesian(i);
b[i] = p.cartesian(i);
}
for (int j=0; j<V.size(); ++j)
M(d,j) = 1;
b[d]=1;
FT D;
LA::linear_solver(M,b,x,D);
for (i=0; i < x.dimension(); ++result, ++i) {
*result= x[i];
}
return result;
}
};
template <class R>
struct OrientationCd {
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
template <class ForwardIterator>
Orientation operator()(ForwardIterator first, ForwardIterator last)
{ TUPLE_DIM_CHECK(first,last,Orientation_d);
int d = std::distance(first,last);
// range contains d points of dimension d-1
CGAL_assertion_msg(first->dimension() == d-1,
"Orientation_d: needs first->dimension() + 1 many points.");
typename LA::Matrix M(d); // quadratic
for (int i = 0; i < d; ++first,++i) {
for (int j = 0; j < d-1; ++j)
M(i,j) = first->cartesian(j);
M(i,d-1) = 1;
}
int row_correction = ( (d % 2 == 0) ? -1 : +1 );
// we invert the sign if the row number is even i.e. d is odd
return Orientation(row_correction * LA::sign_of_determinant(M));
}
};
template <class R>
struct Side_of_oriented_sphereCd {
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
typedef typename R::FT FT;
template <class ForwardIterator>
Oriented_side operator()(ForwardIterator first, ForwardIterator last,
const Point_d& x)
{
TUPLE_DIM_CHECK(first,last,Side_of_oriented_sphere_d);
int d = std::distance(first,last); // |A| contains |d| points
CGAL_assertion_msg((d-1 == first->dimension()),
"Side_of_oriented_sphere_d: needs first->dimension()+1 many input points.");
typename LA::Matrix M(d + 1);
for (int i = 0; i < d; ++first, ++i) {
FT Sum = 0;
M(i,0) = 1;
for (int j = 0; j < d-1; j++) {
FT cj = first->cartesian(j);
M(i,j + 1) = cj; Sum += cj*cj;
}
M(i,d) = Sum;
}
FT Sum = 0;
M(d,0) = 1;
for (int j = 0; j < d-1; j++) {
FT hj = x.cartesian(j);
M(d,j + 1) = hj; Sum += hj*hj;
}
M(d,d) = Sum;
return - LA::sign_of_determinant(M);
}
};
template <class R>
struct Side_of_bounded_sphereCd {
typedef typename R::Point_d Point_d;
template <class ForwardIterator>
Bounded_side operator()(ForwardIterator first, ForwardIterator last,
const Point_d& p)
{
TUPLE_DIM_CHECK(first,last,region_of_sphere);
typename R::Orientation_d _orientation;
Orientation o = _orientation(first,last);
CGAL_assertion_msg((o != 0), "Side_of_bounded_sphere_d: \
A must be full dimensional.");
typename R::Side_of_oriented_sphere_d _side_of_oriented_sphere;
Oriented_side oside = _side_of_oriented_sphere(first,last,p);
if (o == POSITIVE) {
switch (oside) {
case ON_POSITIVE_SIDE : return ON_BOUNDED_SIDE;
case ON_ORIENTED_BOUNDARY: return ON_BOUNDARY;
case ON_NEGATIVE_SIDE : return ON_UNBOUNDED_SIDE;
}
} else {
switch (oside) {
case ON_POSITIVE_SIDE : return ON_UNBOUNDED_SIDE;
case ON_ORIENTED_BOUNDARY: return ON_BOUNDARY;
case ON_NEGATIVE_SIDE : return ON_BOUNDED_SIDE;
}
}
return ON_BOUNDARY; // never reached
}
};
template <class R>
struct Contained_in_simplexCd {
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
typedef typename R::FT FT;
template <class ForwardIterator>
bool operator()(ForwardIterator first, ForwardIterator last,
const Point_d& p)
{
TUPLE_DIM_CHECK(first,last,Contained_in_simplex_d);
int k = std::distance(first,last); // |A| contains |k| points
int d = first->dimension();
CGAL_assertion_code(
typename R::Affinely_independent_d check_independence; )
CGAL_assertion_msg(check_independence(first,last),
"Contained_in_simplex_d: A not affinely independent.");
CGAL_assertion(d==p.dimension());
typename LA::Matrix M(d + 1,k);
typename LA::Vector b(d +1);
for (int j = 0; j < k; ++first, ++j) {
for (int i = 0; i < d; ++i)
M(i,j) = first->cartesian(i);
M(d,j) = 1;
}
for (int i = 0; i < d; ++i)
b[i] = p.cartesian(i);
b[d] = 1;
FT D;
typename LA::Vector lambda;
if ( LA::linear_solver(M,b,lambda,D) ) {
for (int j = 0; j < k; j++) {
if (lambda[j] < FT(0)) return false;
}
return true;
}
return false;
}
};
template <class R>
struct Contained_in_affine_hullCd {
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
template <class ForwardIterator>
bool operator()(ForwardIterator first, ForwardIterator last,
const Point_d& p)
{
TUPLE_DIM_CHECK(first,last,Contained_in_affine_hull_d);
int k = std::distance(first,last); // |A| contains |k| points
int d = first->dimension();
typename LA::Matrix M(d + 1,k);
typename LA::Vector b(d + 1);
for (int j = 0; j < k; ++first, ++j) {
for (int i = 0; i < d; ++i)
M(i,j) = first->cartesian(i);
M(d,j) = 1;
}
for (int i = 0; i < d; ++i)
b[i] = p.cartesian(i);
b[d] = 1;
return LA::is_solvable(M,b);
}
};
template <class R>
struct Affine_rankCd {
typedef typename R::Point_d Point_d;
typedef typename R::Vector_d Vector_d;
typedef typename R::LA LA;
template <class ForwardIterator>
int operator()(ForwardIterator first, ForwardIterator last)
{
TUPLE_DIM_CHECK(first,last,Affine_rank_d);
int k = std::distance(first,last); // |A| contains |k| points
if (k == 0) return -1;
if (k == 1) return 0;
int d = first->dimension();
typename LA::Matrix M(d,--k);
Point_d p0 = *first; ++first; // first points to second
for (int j = 0; j < k; ++first, ++j) {
Vector_d v = *first - p0;
for (int i = 0; i < d; i++)
M(i,j) = v.cartesian(i);
}
return LA::rank(M);
}
};
template <class R>
struct Affinely_independentCd {
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
template <class ForwardIterator>
bool operator()(ForwardIterator first, ForwardIterator last)
{ typename R::Affine_rank_d rank;
int n = std::distance(first,last);
return rank(first,last) == n-1;
}
};
template <class R>
struct Compare_lexicographicallyCd {
typedef typename R::Point_d Point_d;
typedef typename R::Point_d PointD; //MSVC hack
Comparison_result operator()(const Point_d& p1, const Point_d& p2)
{ return PointD::cmp(p1,p2); }
};
template <class R>
struct Contained_in_linear_hullCd {
typedef typename R::LA LA;
typedef typename R::FT FT;
typedef typename R::Vector_d Vector_d;
template<class ForwardIterator>
bool operator()(
ForwardIterator first, ForwardIterator last, const Vector_d& x)
{ TUPLE_DIM_CHECK(first,last,Contained_in_linear_hull_d);
int k = std::distance(first,last); // |A| contains |k| vectors
int d = first->dimension();
typename LA::Matrix M(d,k);
typename LA::Vector b(d);
for (int i = 0; i < d; i++) {
b[i] = x.cartesian(i);
for (int j = 0; j < k; j++)
M(i,j) = (first+j)->cartesian(i);
}
return LA::is_solvable(M,b);
}
};
template <class R>
struct Linear_rankCd {
typedef typename R::LA LA;
template <class ForwardIterator>
int operator()(ForwardIterator first, ForwardIterator last)
{ TUPLE_DIM_CHECK(first,last,linear_rank);
int k = std::distance(first,last); // k vectors
int d = first->dimension();
typename LA::Matrix M(d,k);
for (int i = 0; i < d ; i++)
for (int j = 0; j < k; j++)
M(i,j) = (first + j)->cartesian(i);
return LA::rank(M);
}
};
template <class R>
struct Linearly_independentCd {
typedef typename R::LA LA;
template <class ForwardIterator>
bool operator()(ForwardIterator first, ForwardIterator last)
{ typename R::Linear_rank_d rank;
return rank(first,last) == std::distance(first,last);
}
};
template <class R>
struct Linear_baseCd {
typedef typename R::LA LA;
typedef typename R::FT FT;
typedef typename R::Vector_d Vector_d;
template <class ForwardIterator, class OutputIterator>
OutputIterator operator()(ForwardIterator first, ForwardIterator last,
OutputIterator result)
{ TUPLE_DIM_CHECK(first,last,linear_base);
int k = std::distance(first,last); // k vectors
int d = first->dimension();
typename LA::Matrix M(d,k);
for (int j = 0; j < k; ++first, ++j)
for (int i = 0; i < d; i++)
M(i,j) = first->cartesian(i);
std::vector<int> indcols;
int r = LA::independent_columns(M,indcols);
for (int l=0; l < r; l++) {
typename LA::Vector v = M.column(indcols[l]);
*result++ = Vector_d(d,v.begin(),v.end());
}
return result;
}
};
CGAL_END_NAMESPACE
#endif //CGAL_FUNCTION_OBJECTSCD_H