cgal/Kernel_23/doc_tex/Kernel_23_ref/Homogeneous.tex

33 lines
1.2 KiB
TeX

\begin{ccRefClass}{Homogeneous<RingNumberType>}
\ccInclude{CGAL/Homogeneous.h}
\ccDefinition
A model for a \ccc{Kernel} using homogeneous coordinates to represent the
geometric objects. In order for \ccRefName\ to model Euclidean geometry
in $E^2$ and/or $E^3$, for some mathematical ring $E$ (\textit{e.g.},
the integers \Z\ or the rationals \Q), the template parameter RingNumberType
must model the mathematical ring $E$. That is, the ring operations on this
number type must compute the mathematically correct results. If the number
type provided as a model for RingNumberType is only an approximation of a
ring (such as the built-in type \ccc{double}), then the geometry provided by
the kernel is only an approximation of Euclidean geometry.
\ccIsModel
\ccRefConceptPage{Kernel}
\ccTexHtml{\ccSetThreeColumns{typedef Quotient<RingNumberType>}{}{\hspace*{8.5cm}}}{}
\ccTypes
\ccTypedef{typedef Quotient<RingNumberType> FT;}{}
\ccGlue
\ccTypedef{typedef RingNumberType RT;}{}
\ccImplementation
This model of a kernel uses reference counting.
\ccSeeAlso
\ccRefIdfierPage{CGAL::Cartesian<FieldNumberType>} \\
\ccRefIdfierPage{CGAL::Simple_cartesian<FieldNumberType>} \\
\ccRefIdfierPage{CGAL::Simple_homogeneous<RingNumberType>} \\
\end{ccRefClass}