cgal/Bounding_volumes/test/Bounding_volumes/lp-alg-double.cpp

103 lines
2.8 KiB
C++

// Description: This program computes the miniball of some random
// balls in 3D using the LP-algorithm and double arithmetic, and thus
// checks that the LP-algorithm at least compiles and runs using
// double arithmetic (although this test doesn't say anything about
// the quality of the produced result).
//
// Note: This program is identical to the benchmark.cpp program in
// the examples directory, with the only difference that the LP-algorithm
// is run instead of the default algorithm. (In particular, the output
// radii should be the same.)
//
// Compatibility: works with or without CGAL
#include <CGAL/Min_sphere_of_spheres_d.h>
#include <iostream>
#include <vector>
#include <ctime>
class Ball {
private: // representation:
double c[3]; // center in Eucliden coordinates
double r; // radius
public: // constructor:
Ball() {}
template<typename InputIterator>
Ball(InputIterator from,double r) : r(r) {
c[0] = *from;
c[1] = *++from;
c[2] = *++from;
}
public: // accessors:
double radius() const { return r; }
public: // iterator to iterate over the 3 coordinates:
typedef const double *ConstIterator;
ConstIterator beginCenter() const { return c; }
};
struct BallTraits {
typedef ::Ball Sphere;
static const int D=3;
typedef CGAL::LP_algorithm Algorithm;
typedef CGAL::Tag_true Use_square_roots;
typedef double FT;
typedef Sphere::ConstIterator Cartesian_const_iterator;
static Cartesian_const_iterator center_cartesian_begin(const Sphere& b) {
return b.beginCenter();
}
static double radius(const Sphere& b) {
return b.radius();
}
};
double uniform() { // a (platform independent) random number generator
static int lastNo = 230575L;
const int a = 16807L, m = 2147483647L, q = 127773L, r = 2836L;
int gamma = a * (lastNo % q) - r * (lastNo / q);
if (gamma > 0)
lastNo = gamma;
else
lastNo = gamma + m;
return static_cast<double>(lastNo)/m;
}
int main(int,char **) {
typedef CGAL::Min_sphere_of_spheres_d<BallTraits> Minsphere;
using namespace std;
// generate a million random spheres:
const int N = 1000000;
vector<Ball> S;
for (int i=0; i<N; ++i) {
double a[3] = { uniform(), uniform(), uniform() };
S.push_back(Ball(a,uniform()));
}
// remember current time:
clock_t time = clock();
// check in the balls:
Minsphere mb(S.begin(),S.end());
// measure time:
mb.is_empty();
time = clock() - time;
// output running time:
cout << "----------------------------------------------------" << endl
<< "Benchmark: "
<< static_cast<double>(time)/CLOCKS_PER_SEC
<< "s (in units of " << 1.0/CLOCKS_PER_SEC << "s)." << endl
<< "----------------------------------------------------" << endl
<< endl;
// for the fun of it, output the radius:
cout << "Done. (Radius: " << mb.radius() << ')' << endl;
}