cgal/Old_Packages/C2/include/CGAL/Cartesian/Triangle_2.C

283 lines
6.9 KiB
C

// ======================================================================
//
// Copyright (c) 2000 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------
//
// release :
// release_date :
//
// file : include/CGAL/Cartesian/Triangle_2.C
// revision : $Revision$
// revision_date : $Date$
// author(s) : Andreas Fabri, Herve Bronnimann
// coordinator : INRIA Sophia-Antipolis (Mariette.Yvinec@sophia.inria.fr)
//
// ======================================================================
#ifndef CGAL_CARTESIAN_TRIANGLE_2_C
#define CGAL_CARTESIAN_TRIANGLE_2_C
#include <CGAL/Cartesian/predicates_on_points_2.h>
#ifndef CGAL_CARTESIAN_REDEFINE_NAMES_2_H
#define CGAL_CTAG
#endif
#ifdef CGAL_CFG_TYPENAME_BUG
#define typename
#endif
CGAL_BEGIN_NAMESPACE
template < class R >
CGAL_KERNEL_CTOR_INLINE
TriangleC2<R CGAL_CTAG>::TriangleC2()
{
new ( static_cast< void*>(ptr)) Threetuple<Point_2>();
}
template < class R >
CGAL_KERNEL_CTOR_INLINE
TriangleC2<R CGAL_CTAG>::TriangleC2(const TriangleC2<R CGAL_CTAG> &t)
: Handle_for<Threetuple< typename R::Point_2> >(t)
{}
template < class R >
CGAL_KERNEL_CTOR_INLINE
TriangleC2<R CGAL_CTAG>::
TriangleC2(const typename TriangleC2<R CGAL_CTAG>::Point_2 &p,
const typename TriangleC2<R CGAL_CTAG>::Point_2 &q,
const typename TriangleC2<R CGAL_CTAG>::Point_2 &r)
{
new ( static_cast< void*>(ptr)) Threetuple<Point_2>(p, q, r);
}
template < class R >
inline
TriangleC2<R CGAL_CTAG>::~TriangleC2()
{}
template < class R >
CGAL_KERNEL_MEDIUM_INLINE
bool
TriangleC2<R CGAL_CTAG>::operator==(const TriangleC2<R CGAL_CTAG> &t) const
{
if ( ptr == t.ptr ) return true;
int i;
for(i=0; i<3; i++)
if ( vertex(0) == t.vertex(i) )
break;
return (i<3) && vertex(1) == t.vertex(i+1) && vertex(2) == t.vertex(i+2);
}
template < class R >
inline
bool
TriangleC2<R CGAL_CTAG>::operator!=(const TriangleC2<R CGAL_CTAG> &t) const
{
return !(*this == t);
}
template < class R >
CGAL_KERNEL_MEDIUM_INLINE
typename TriangleC2<R CGAL_CTAG>::Point_2
TriangleC2<R CGAL_CTAG>::vertex(int i) const
{
if (i>2) i = i%3;
else if (i<0) i = (i%3) + 3;
return (i==0) ? ptr->e0 :
(i==1) ? ptr->e1 :
ptr->e2;
}
template < class R >
inline
typename TriangleC2<R CGAL_CTAG>::Point_2
TriangleC2<R CGAL_CTAG>::operator[](int i) const
{
return vertex(i);
}
template < class R >
inline
Orientation
TriangleC2<R CGAL_CTAG>::orientation() const
{
return CGAL::orientation(vertex(0), vertex(1), vertex(2));
}
template < class R >
CGAL_KERNEL_LARGE_INLINE
Bounded_side
TriangleC2<R CGAL_CTAG>::
bounded_side(const typename TriangleC2<R CGAL_CTAG>::Point_2 &p) const
{
Orientation o1 = CGAL::orientation(vertex(0), vertex(1), p),
o2 = CGAL::orientation(vertex(1), vertex(2), p),
o3 = CGAL::orientation(vertex(2), vertex(3), p);
if (o2 == o1 && o3 == o1)
return ON_BOUNDED_SIDE;
return
(o1 == COLLINEAR
&& collinear_are_ordered_along_line(vertex(0), p, vertex(1))) ||
(o2 == COLLINEAR
&& collinear_are_ordered_along_line(vertex(1), p, vertex(2))) ||
(o3 == COLLINEAR
&& collinear_are_ordered_along_line(vertex(2), p, vertex(3)))
? ON_BOUNDARY
: ON_UNBOUNDED_SIDE;
}
template < class R >
CGAL_KERNEL_LARGE_INLINE
Oriented_side
TriangleC2<R CGAL_CTAG>::
oriented_side(const typename TriangleC2<R CGAL_CTAG>::Point_2 &p) const
{
// depends on the orientation of the vertices
Orientation o1 = CGAL::orientation(vertex(0), vertex(1), p),
o2 = CGAL::orientation(vertex(1), vertex(2), p),
o3 = CGAL::orientation(vertex(2), vertex(3), p),
ot = CGAL::orientation(vertex(0), vertex(1), vertex(2));
if (o1 == ot && o2 == ot && o3 == ot) // ot cannot be COLLINEAR
return Oriented_side(ot);
return
(o1 == COLLINEAR
&& collinear_are_ordered_along_line(vertex(0), p, vertex(1))) ||
(o2 == COLLINEAR
&& collinear_are_ordered_along_line(vertex(1), p, vertex(2))) ||
(o3 == COLLINEAR
&& collinear_are_ordered_along_line(vertex(2), p, vertex(3)))
? ON_ORIENTED_BOUNDARY
: Oriented_side(-ot);
}
template < class R >
CGAL_KERNEL_LARGE_INLINE
bool
TriangleC2<R CGAL_CTAG>::
has_on_bounded_side(const typename TriangleC2<R CGAL_CTAG>::Point_2 &p) const
{
return bounded_side(p) == ON_BOUNDED_SIDE;
}
template < class R >
CGAL_KERNEL_LARGE_INLINE
bool
TriangleC2<R CGAL_CTAG>::
has_on_unbounded_side(const typename TriangleC2<R CGAL_CTAG>::Point_2 &p) const
{
return bounded_side(p) == ON_UNBOUNDED_SIDE;
}
template < class R >
inline
bool
TriangleC2<R CGAL_CTAG>::
has_on_boundary(const typename TriangleC2<R CGAL_CTAG>::Point_2 &p) const
{
return bounded_side(p) == ON_BOUNDARY;
}
template < class R >
inline
bool
TriangleC2<R CGAL_CTAG>::
has_on_negative_side(const typename TriangleC2<R CGAL_CTAG>::Point_2 &p) const
{
return oriented_side(p) == ON_NEGATIVE_SIDE;
}
template < class R >
inline
bool
TriangleC2<R CGAL_CTAG>::
has_on_positive_side(const typename TriangleC2<R CGAL_CTAG>::Point_2 &p) const
{
return oriented_side(p) == ON_POSITIVE_SIDE;
}
template < class R >
inline
bool TriangleC2<R CGAL_CTAG>::is_degenerate() const
{
return collinear(vertex(0), vertex(1), vertex(2));
}
template < class R >
inline
Bbox_2 TriangleC2<R CGAL_CTAG>::bbox() const
{
return vertex(0).bbox() + vertex(1).bbox() + vertex(2).bbox();
}
template < class R >
inline
TriangleC2<R CGAL_CTAG>
TriangleC2<R CGAL_CTAG>::
transform(const
typename TriangleC2<R CGAL_CTAG>::Aff_transformation_2 &t) const
{
return TriangleC2<R CGAL_CTAG>(t.transform(vertex(0)),
t.transform(vertex(1)),
t.transform(vertex(2)));
}
template < class R >
inline
TriangleC2<R CGAL_CTAG>
TriangleC2<R CGAL_CTAG>::
opposite() const
{
return TriangleC2<R CGAL_CTAG>(vertex(0), vertex(2), vertex(1));
}
#ifndef CGAL_NO_OSTREAM_INSERT_TRIANGLEC2
template < class R >
std::ostream &
operator<<(std::ostream &os, const TriangleC2<R CGAL_CTAG> &t)
{
switch(os.iword(IO::mode)) {
case IO::ASCII :
return os << t[0] << ' ' << t[1] << ' ' << t[2];
case IO::BINARY :
return os << t[0] << t[1] << t[2];
default:
return os<< "TriangleC2(" << t[0] << ", "
<< t[1] << ", " << t[2] <<")";
}
}
#endif // CGAL_NO_OSTREAM_INSERT_TRIANGLEC2
#ifndef CGAL_NO_ISTREAM_EXTRACT_TRIANGLEC2
template < class R >
std::istream &
operator>>(std::istream &is, TriangleC2<R CGAL_CTAG> &t)
{
TriangleC2<R CGAL_CTAG>::Point_2 p, q, r;
is >> p >> q >> r;
t = TriangleC2<R CGAL_CTAG>(p, q, r);
return is;
}
#endif // CGAL_NO_ISTREAM_EXTRACT_TRIANGLEC2
CGAL_END_NAMESPACE
#ifdef CGAL_CFG_TYPENAME_BUG
#undef typename
#endif
#endif // CGAL_CARTESIAN_TRIANGLE_2_C