cgal/Old_Packages/C2/include/CGAL/constructions/kernel_ftC2.h

263 lines
6.4 KiB
C++

// ======================================================================
//
// Copyright (c) 2000 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------
//
// release :
// release_date :
//
// file : include/CGAL/constructions/kernel_ftC2.h
// revision : $Revision$
// revision_date : $Date$
// author(s) : Sven Schoenherr, Hervé Brönnimann, Sylvain Pion
// coordinator : INRIA Sophia-Antipolis (Mariette.Yvinec@sophia.inria.fr)
//
// ======================================================================
#ifndef CGAL_CONSTRUCTIONS_KERNEL_FTC2_H
#define CGAL_CONSTRUCTIONS_KERNEL_FTC2_H
#include <CGAL/determinant.h>
CGAL_BEGIN_NAMESPACE
template < class FT >
CGAL_KERNEL_INLINE
void
midpointC2( const FT &px, const FT &py,
const FT &qx, const FT &qy,
FT &x, FT &y )
{
x = (px+qx) / FT(2);
y = (py+qy) / FT(2);
}
template < class FT >
CGAL_KERNEL_LARGE_INLINE
void
circumcenter_translateC2(const FT &dqx, const FT &dqy,
const FT &drx, const FT &dry,
FT &dcx, FT &dcy)
{
// Given 3 points P, Q, R, this function takes as input:
// qx-px, qy-py, rx-px, ry-py. And returns cx-px, cy-py,
// where (cx, cy) are the coordinates of the circumcenter C.
// What we do is intersect the bisectors.
FT r2 = CGAL_NTS square(drx) + CGAL_NTS square(dry);
FT q2 = CGAL_NTS square(dqx) + CGAL_NTS square(dqy);
FT den = FT(2) * det2x2_by_formula(dqx, dqy, drx, dry);
// The 3 points aren't collinear.
// Hopefully, this is already checked at the upper level.
CGAL_kernel_assertion ( den != FT(0) );
// One possible optimization here is to precompute 1/den, to avoid one
// division. However, we loose precision, and it's maybe not worth it (?).
dcx = det2x2_by_formula (dry, dqy, r2, q2) / den;
dcy = - det2x2_by_formula (drx, dqx, r2, q2) / den;
}
template < class FT >
CGAL_KERNEL_MEDIUM_INLINE
void
circumcenterC2( const FT &px, const FT &py,
const FT &qx, const FT &qy,
const FT &rx, const FT &ry,
FT &x, FT &y )
{
circumcenter_translateC2(qx-px, qy-py, rx-px, ry-py, x, y);
x += px;
y += py;
}
template < class FT >
inline
void
line_from_pointsC2(const FT &px, const FT &py,
const FT &qx, const FT &qy,
FT &a, FT &b, FT &c)
{
a = py - qy;
b = qx - px;
// Suggested by Serge Pashkov (psw@rt.kiam.ru) for better numeric stability.
c = -px*a - py*b;
// c = px*qy - py*qx;
}
template < class FT >
inline
void
line_from_point_directionC2(const FT &px, const FT &py,
const FT &dx, const FT &dy,
FT &a, FT &b, FT &c)
{
a = - dy;
b = dx;
c = px*dy - py*dx;
}
template < class FT >
CGAL_KERNEL_INLINE
void
bisector_of_pointsC2(const FT &px, const FT &py,
const FT &qx, const FT &qy,
FT &a, FT &b, FT& c )
{
a = FT(2)*(px - qx);
b = FT(2)*(py - qy);
c = CGAL_NTS square(qx) + CGAL_NTS square(qy) -
CGAL_NTS square(px) - CGAL_NTS square(py);
}
template < class FT >
inline
FT
line_y_at_xC2(const FT &a, const FT &b, const FT &c, const FT &x)
{
return (-a*x-c) / b;
}
template < class FT >
inline
void
line_get_pointC2(const FT &a, const FT &b, const FT &c, int i,
FT &x, FT &y)
{
if (b==FT(0))
{
x = (-b-c)/a + FT(i)*b;
y = FT(1) - FT(i)*a;
}
else
{
x = FT(1) + FT(i)*b;
y = -(a+c)/b - FT(i)*a;
}
}
template < class FT >
inline
void
perpendicular_through_pointC2(const FT &la, const FT &lb,
const FT &px, const FT &py,
FT &a, FT &b, FT &c)
{
a = -lb;
b = la;
c = lb * px - la * py;
}
template < class FT >
CGAL_KERNEL_MEDIUM_INLINE
void
line_project_pointC2(const FT &la, const FT &lb, const FT &lc,
const FT &px, const FT &py,
FT &x, FT &y)
{
#if 1
// Original old version
if (la==FT(0)) // horizontal line
{
x = px;
y = -lc/lb;
}
else if (lb==FT(0)) // vertical line
{
x = -lc/la;
y = py;
}
else
{
FT ab = la/lb, ba = lb/la, ca = lc/la;
y = ( -px + ab*py - ca ) / ( ba + ab );
x = -ba * y - ca;
}
#else
// New version, with more multiplications, but less divisions and tests.
// Let's compare the results of the 2, benchmark them, as well as check
// the precision with the intervals.
FT a2 = CGAL_NTS square(la);
FT b2 = CGAL_NTS square(lb);
FT d = a2 + b2;
x = (la * (lb * py - lc) - px * b2) / d;
y = (lb * (lc - la * px) + py * a2) / d;
#endif
}
template < class FT >
CGAL_KERNEL_MEDIUM_INLINE
FT
squared_circumradiusC2(const FT &px, const FT &py,
const FT &qx, const FT &qy,
const FT &rx, const FT &ry,
FT &x, FT &y )
{
circumcenter_translateC2(qx-px, qy-py, rx-px, ry-py, x, y);
FT r2 = CGAL_NTS square(x) + CGAL_NTS square(y);
x += px;
y += py;
return r2;
}
template < class FT >
CGAL_KERNEL_MEDIUM_INLINE
FT
squared_circumradiusC2(const FT &px, const FT &py,
const FT &qx, const FT &qy,
const FT &rx, const FT &ry)
{
FT x, y;
circumcenter_translateC2(qx-px, qy-py, rx-px, ry-py, x, y);
return CGAL_NTS square(x) + CGAL_NTS square(y);
}
template < class FT >
CGAL_KERNEL_INLINE
FT
squared_distanceC2( const FT &px, const FT &py,
const FT &qx, const FT &qy)
{
return CGAL_NTS square(px-qx) + CGAL_NTS square(py-qy);
}
template < class FT >
CGAL_KERNEL_INLINE
FT
scaled_distance_to_lineC2( const FT &la, const FT &lb, const FT &lc,
const FT &px, const FT &py)
{
// for comparisons, use distance_to_directionsC2 instead
// since lc is irrelevant
return la*px + lb*py + lc;
}
template < class FT >
CGAL_KERNEL_INLINE
FT
scaled_distance_to_directionC2( const FT &la, const FT &lb,
const FT &px, const FT &py)
{
// scalar product with direction
return la*px + lb*py;
}
template < class FT >
CGAL_KERNEL_MEDIUM_INLINE
FT
scaled_distance_to_lineC2( const FT &px, const FT &py,
const FT &qx, const FT &qy,
const FT &rx, const FT &ry)
{
return det2x2_by_formula(px-rx,py-ry,qx-rx,qy-ry);
}
CGAL_END_NAMESPACE
#endif // CGAL_CONSTRUCTIONS_KERNEL_FTC2_H