cgal/Old_Packages/C2/include/CGAL/predicates/kernel_ftC2.h

418 lines
14 KiB
C++

// ======================================================================
//
// Copyright (c) 2000 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------
//
// release :
// release_date :
//
// file : include/CGAL/predicates/kernel_ftC2.h
// revision : $Revision$
// revision_date : $Date$
// author(s) : Herve Bronnimann (Herve.Bronnimann@sophia.inria.fr)
// coordinator : INRIA Sophia-Antipolis (Mariette.Yvinec@sophia.inria.fr)
//
// ======================================================================
#ifndef CGAL_PREDICATES_KERNEL_FTC2_H
#define CGAL_PREDICATES_KERNEL_FTC2_H
#include <CGAL/number_utils.h>
#include <CGAL/predicates/sign_of_determinant.h>
#include <CGAL/constructions/kernel_ftC2.h>
CGAL_BEGIN_NAMESPACE
template < class FT >
CGAL_KERNEL_MEDIUM_INLINE
bool
equal_lineC2(const FT &l1a, const FT &l1b, const FT &l1c,
const FT &l2a, const FT &l2b, const FT &l2c)
{
if (sign_of_determinant2x2(l1a, l1b, l2a, l2b) != ZERO)
return false; // Not parallel.
CGAL::Sign s1a = CGAL_NTS sign(l1a);
if (s1a != ZERO)
return s1a == CGAL_NTS sign(l2a)
&& sign_of_determinant2x2(l1a, l1c, l2a, l2c) == ZERO;
return CGAL_NTS sign(l1b) == CGAL_NTS sign(l2b)
&& sign_of_determinant2x2(l1b, l1c, l2b, l2c) == ZERO;
}
template < class FT >
CGAL_KERNEL_MEDIUM_INLINE
Comparison_result
compare_xC2(const FT &px,
const FT &la, const FT &lb, const FT &lc,
const FT &ha, const FT &hb, const FT &hc)
{
// The abscissa of the intersection point is num/den.
FT num = det2x2_by_formula( lb, lc, hb, hc);
FT den = det2x2_by_formula( la, lb, ha, hb);
Sign s = CGAL_NTS sign(den);
CGAL_kernel_assertion( s != ZERO );
return Comparison_result( s * CGAL_NTS compare( px * den, num) );
}
template < class FT >
CGAL_KERNEL_MEDIUM_INLINE
Comparison_result
compare_xC2(const FT &la, const FT &lb, const FT &lc,
const FT &h1a, const FT &h1b, const FT &h1c,
const FT &h2a, const FT &h2b, const FT &h2c)
{
/*
FT num1 = det2x2_by_formula( lb, lc, h1b, h1c);
FT den1 = det2x2_by_formula( la, lb, h1a, h1b);
FT num2 = det2x2_by_formula( lb, lc, h2b, h2c);
FT den2 = det2x2_by_formula( la, lb, h2a, h2b);
Sign s = Sign (CGAL_NTS sign(den1) * CGAL_NTS sign(den2));
CGAL_kernel_assertion( s != ZERO );
return Comparison_result( s * sign_of_determinant2x2(num1,
num2, den1, den2));
*/
FT num1 = det2x2_by_formula( la, lc, h1a, h1c);
FT num2 = det2x2_by_formula( la, lc, h2a, h2c);
FT num = det2x2_by_formula(h1a,h1c,h2a,h2c)*lb
+ det2x2_by_formula(num1,num2,h1b,h2b);
FT den1 = det2x2_by_formula( la, lb, h1a, h1b);
FT den2 = det2x2_by_formula( la, lb, h2a, h2b);
return Comparison_result( CGAL_NTS sign(lb) * CGAL_NTS sign(num) *
CGAL_NTS sign(den1) * CGAL_NTS sign(den2));
}
template < class FT >
CGAL_KERNEL_MEDIUM_INLINE
Comparison_result
compare_xC2(const FT &l1a, const FT &l1b, const FT &l1c,
const FT &h1a, const FT &h1b, const FT &h1c,
const FT &l2a, const FT &l2b, const FT &l2c,
const FT &h2a, const FT &h2b, const FT &h2c)
{
FT num1 = det2x2_by_formula( l1b, l1c, h1b, h1c);
FT den1 = det2x2_by_formula( l1a, l1b, h1a, h1b);
FT num2 = det2x2_by_formula( l2b, l2c, h2b, h2c);
FT den2 = det2x2_by_formula( l2a, l2b, h2a, h2b);
Sign s = Sign (CGAL_NTS sign(den1) * CGAL_NTS sign(den2));
CGAL_kernel_assertion( s != ZERO );
return Comparison_result( s * sign_of_determinant2x2(num1, num2,
den1, den2));
}
template < class FT >
CGAL_KERNEL_MEDIUM_INLINE
Comparison_result
compare_y_at_xC2(const FT &px, const FT &py,
const FT &la, const FT &lb, const FT &lc)
{
Sign s = CGAL_NTS sign(lb);
CGAL_kernel_assertion( s != ZERO );
return Comparison_result (s * CGAL_NTS sign(la*px + lb*py + lc));
}
template < class FT >
CGAL_KERNEL_MEDIUM_INLINE
Comparison_result
compare_y_at_xC2(const FT &px,
const FT &l1a, const FT &l1b, const FT &l1c,
const FT &l2a, const FT &l2b, const FT &l2c)
{
Sign s = Sign (CGAL_NTS sign(l1b) * CGAL_NTS sign(l2b));
CGAL_kernel_assertion( s != ZERO );
return Comparison_result ( s * sign_of_determinant2x2(l2a*px+l2c, l2b,
l1a*px+l1c, l1b));
}
template < class FT >
CGAL_KERNEL_LARGE_INLINE
Comparison_result
compare_y_at_xC2(const FT &l1a, const FT &l1b, const FT &l1c,
const FT &l2a, const FT &l2b, const FT &l2c,
const FT &ha, const FT &hb, const FT &hc)
{
Sign s = Sign (sign_of_determinant2x2(l1a, l1b, l2a, l2b) *
CGAL_NTS sign(hb));
CGAL_kernel_assertion( s != ZERO );
return Comparison_result( s * sign_of_determinant3x3(l1a, l1b, l1c,
l2a, l2b, l2c,
ha, hb, hc));
}
template < class FT >
CGAL_KERNEL_LARGE_INLINE
Comparison_result
compare_y_at_xC2(const FT &l1a, const FT &l1b, const FT &l1c,
const FT &l2a, const FT &l2b, const FT &l2c,
const FT &h1a, const FT &h1b, const FT &h1c,
const FT &h2a, const FT &h2b, const FT &h2c)
{
// The abscissa of the intersection point is num/den.
FT num = det2x2_by_formula( l1b, l1c, l2b, l2c);
FT den = det2x2_by_formula( l1a, l1b, l2a, l2b);
Sign s = Sign (CGAL_NTS sign(h1b) * CGAL_NTS sign(h2b) * CGAL_NTS sign(den));
CGAL_kernel_assertion( s != ZERO );
return Comparison_result ( s * sign_of_determinant2x2(h2a*num+h2c*den, h2b,
h1a*num+h1c*den, h1b));
}
template < class FT >
CGAL_KERNEL_MEDIUM_INLINE
bool
equal_directionC2(const FT &dx1, const FT &dy1,
const FT &dx2, const FT &dy2)
{
return CGAL_NTS sign(dx1) == CGAL_NTS sign(dx2)
&& CGAL_NTS sign(dy1) == CGAL_NTS sign(dy2)
&& sign_of_determinant2x2(dx1, dy1, dx2, dy2) == ZERO;
}
template < class FT >
/*CGAL_NO_FILTER*/
CGAL_KERNEL_MEDIUM_INLINE
Comparison_result
compare_angle_with_x_axisC2(const FT &dx1, const FT &dy1,
const FT &dx2, const FT &dy2)
{
// angles are in [-pi,pi], and the angle between Ox and d1 is compared
// with the angle between Ox and d2
int quadrant_1 = (dx1 >= FT(0)) ? ((dy1 >= FT(0))?1:4)
: ((dy1 >= FT(0))?2:3);
int quadrant_2 = (dx2 >= FT(0)) ? ((dy2 >= FT(0))?1:4)
: ((dy2 >= FT(0))?2:3);
// We can't use CGAL_NTS compare(quadrant_1,quadrant_2) because in case
// of tie, we need additional computation
if (quadrant_1 > quadrant_2)
return LARGER;
else if (quadrant_1 < quadrant_2)
return SMALLER;
return Comparison_result(-sign_of_determinant2x2(dx1,dy1,dx2,dy2));
}
template < class FT >
inline
Comparison_result
compare_deltax_deltayC2(const FT &px, const FT &qx,
const FT &ry, const FT &sy)
{
return CGAL_NTS compare(CGAL_NTS abs(px-qx), CGAL_NTS abs(ry-sy));
}
template < class FT >
/*CGAL_NO_FILTER*/
inline
Comparison_result
compare_lexicographically_xyC2(const FT &px, const FT &py,
const FT &qx, const FT &qy)
{
Comparison_result c = CGAL_NTS compare(px,qx);
return (c != EQUAL) ? c : CGAL_NTS compare(py,qy);
}
template < class FT >
inline
Orientation
orientationC2(const FT &px, const FT &py,
const FT &qx, const FT &qy,
const FT &rx, const FT &ry)
{
return Orientation (sign_of_determinant2x2(px-rx, py-ry,
qx-rx, qy-ry));
}
template < class FT >
/*CGAL_NO_FILTER*/
CGAL_KERNEL_MEDIUM_INLINE
bool
collinear_are_ordered_along_lineC2(const FT &px, const FT &py,
const FT &qx, const FT &qy,
const FT &rx, const FT &ry)
{
if (px < qx) return !(rx < qx);
if (qx < px) return !(qx < rx);
if (py < qy) return !(ry < qy);
if (qy < py) return !(qy < ry);
return true; // p==q
}
template < class FT >
/*CGAL_NO_FILTER*/
CGAL_KERNEL_MEDIUM_INLINE
bool
collinear_are_strictly_ordered_along_lineC2(const FT &px, const FT &py,
const FT &qx, const FT &qy,
const FT &rx, const FT &ry)
{
if (px < qx) return (qx < rx);
if (qx < px) return (rx < qx);
if (py < qy) return (qy < ry);
if (qy < py) return (ry < qy);
return false;
}
template < class FT >
CGAL_KERNEL_LARGE_INLINE
Oriented_side
side_of_oriented_circleC2(const FT &px, const FT &py,
const FT &qx, const FT &qy,
const FT &rx, const FT &ry,
const FT &tx, const FT &ty)
{
// Oriented_side(
// sign_of_determinant4x4(px, py, px*px + py*py, 1,
// qx, qy, qx*qx + qy*qy, 1,
// rx, ry, rx*rx + ry*ry, 1,
// tx, ty, tx*tx + ty*ty, 1));
// We first translate so that t is the new origin.
FT ptx = px-tx;
FT pty = py-ty;
FT qtx = qx-tx;
FT qty = qy-ty;
FT rtx = rx-tx;
FT rty = ry-ty;
// The usual 3x3 formula can be simplified a little bit to a 2x2.
// sign_of_determinant3x3(ptx, pty, square(ptx) + square(pty),
// qtx, qty, square(qtx) + square(qty),
// rtx, rty, square(rtx) + square(rty)));
return Oriented_side( sign_of_determinant2x2(
ptx*qty - pty*qtx, qtx*(qx-px) + qty*(qy-py),
ptx*rty - pty*rtx, rtx*(rx-px) + rty*(ry-py)));
}
template < class FT >
CGAL_KERNEL_LARGE_INLINE
Bounded_side
side_of_bounded_circleC2(const FT &px, const FT &py,
const FT &qx, const FT &qy,
const FT &rx, const FT &ry,
const FT &tx, const FT &ty)
{
// Note: if the code of these is inlined, and if they are implemented
// in a good way, some CSE can be done by the compiler.
return Bounded_side( side_of_oriented_circleC2(px,py,qx,qy,rx,ry,tx,ty)
* orientationC2(px,py,qx,qy,rx,ry) );
}
template < class FT >
inline
Comparison_result
cmp_dist_to_pointC2(const FT &px, const FT &py,
const FT &qx, const FT &qy,
const FT &rx, const FT &ry)
{
return CGAL_NTS compare(squared_distanceC2(px,py,qx,qy),
squared_distanceC2(px,py,rx,ry));
}
template < class FT >
/*CGAL_NO_FILTER*/
inline
bool
has_larger_dist_to_pointC2(const FT &px, const FT &py,
const FT &qx, const FT &qy,
const FT &rx, const FT &ry)
{
return cmp_dist_to_pointC2(px,py,qx,qy,rx,ry) == LARGER;
}
template < class FT >
/*CGAL_NO_FILTER*/
inline
bool
has_smaller_dist_to_pointC2(const FT &px, const FT &py,
const FT &qx, const FT &qy,
const FT &rx, const FT &ry)
{
return cmp_dist_to_pointC2(px,py,qx,qy,rx,ry) == SMALLER;
}
template < class FT >
inline
Comparison_result
cmp_signed_dist_to_directionC2(const FT &la, const FT &lb,
const FT &px, const FT &py,
const FT &qx, const FT &qy)
{
return CGAL_NTS compare(scaled_distance_to_directionC2(la,lb,px,py),
scaled_distance_to_directionC2(la,lb,qx,qy));
}
template < class FT >
/*CGAL_NO_FILTER*/
inline
bool
has_larger_signed_dist_to_directionC2(const FT &la, const FT &lb,
const FT &px, const FT &py,
const FT &qx, const FT &qy)
{
return cmp_signed_dist_to_directionC2(la,lb,px,py,qx,qy) == LARGER;
}
template < class FT >
/*CGAL_NO_FILTER*/
inline
bool
has_smaller_signed_dist_to_directionC2(const FT &la, const FT &lb,
const FT &px, const FT &py,
const FT &qx, const FT &qy)
{
return cmp_signed_dist_to_directionC2(la,lb,px,py,qx,qy) == SMALLER;
}
template <class FT>
inline
Comparison_result
cmp_signed_dist_to_lineC2(const FT &px, const FT &py,
const FT &qx, const FT &qy,
const FT &rx, const FT &ry,
const FT &sx, const FT &sy)
{
return CGAL_NTS compare(scaled_distance_to_lineC2(px,py,qx,qy,rx,ry),
scaled_distance_to_lineC2(px,py,qx,qy,sx,sy));
}
template <class FT>
/*CGAL_NO_FILTER*/
inline
bool
has_larger_signed_dist_to_lineC2(const FT &px, const FT &py,
const FT &qx, const FT &qy,
const FT &rx, const FT &ry,
const FT &sx, const FT &sy)
{
return cmp_signed_dist_to_lineC2(px,py,qx,qy,rx,ry,sx,sy) == LARGER;
}
template <class FT>
/*CGAL_NO_FILTER*/
inline
bool
has_smaller_signed_dist_to_lineC2(const FT &px, const FT &py,
const FT &qx, const FT &qy,
const FT &rx, const FT &ry,
const FT &sx, const FT &sy)
{
return cmp_signed_dist_to_lineC2(px,py,qx,qy,rx,ry,sx,sy) == SMALLER;
}
template <class FT>
inline
Oriented_side
side_of_oriented_lineC2(const FT &a, const FT &b, const FT &c,
const FT &x, const FT &y)
{
return Oriented_side(CGAL_NTS sign(a*x+b*y+c));
}
CGAL_END_NAMESPACE
#ifdef CGAL_ARITHMETIC_FILTER_H
#include <CGAL/Arithmetic_filter/predicates/kernel_ftC2.h>
#endif
#endif // CGAL_PREDICATES_KERNEL_FTC2_H