cgal/Old_Packages/Cd/include/CGAL/Cartesian/Triangle_d.C

227 lines
5.2 KiB
C

// ======================================================================
//
// Copyright (c) 2000 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------
//
// release :
// release_date :
//
// file : include/CGAL/Cartesian/Triangle_d.C
// revision : $Revision$
// revision_date : $Date$
// author(s) : Hervé Brönnimann
// coordinator : INRIA Sophia-Antipolis (Mariette.Yvinec@sophia.inria.fr)
//
// ======================================================================
#ifndef CGAL_CARTESIAN_REDEFINE_NAMES_D_H
#define CGAL_CTAG
#endif
#ifdef CGAL_CFG_TYPENAME_BUG
#define typename
#endif
#ifndef CGAL_CARTESIAN_TRIANGLE_D_C
#define CGAL_CARTESIAN_TRIANGLE_D_C
CGAL_BEGIN_NAMESPACE
template < class R >
inline _Threetuple< typename TriangleCd<R CGAL_CTAG>::Point_d > *
TriangleCd<R CGAL_CTAG>::ptr() const
{
return (_Threetuple< Point_d >*)PTR;
}
template < class R >
TriangleCd<R CGAL_CTAG>::TriangleCd()
{
PTR = new _Threetuple< Point_d >;
}
template < class R >
TriangleCd<R CGAL_CTAG>::
TriangleCd(const TriangleCd<R CGAL_CTAG> &t) :
Handle(t)
{}
template < class R >
TriangleCd<R CGAL_CTAG>::
TriangleCd(const typename TriangleCd<R CGAL_CTAG>::Point_d &p,
const typename TriangleCd<R CGAL_CTAG>::Point_d &q,
const typename TriangleCd<R CGAL_CTAG>::Point_d &r)
{
CGAL_kernel_precondition( p.dimension()==q.dimension() );
CGAL_kernel_precondition( p.dimension()==r.dimension() );
PTR = new _Threetuple<Point_d>(p, q, r);
}
template < class R >
inline TriangleCd<R CGAL_CTAG>::~TriangleCd()
{}
template < class R >
TriangleCd<R CGAL_CTAG> &
TriangleCd<R CGAL_CTAG>::operator=(const TriangleCd<R CGAL_CTAG> &t)
{
Handle::operator=(t);
return *this;
}
template < class R >
bool
TriangleCd<R CGAL_CTAG>::operator==(const TriangleCd<R CGAL_CTAG> &t) const
{
int i;
if (ptr() == t.ptr()) return true; // identical
for(i=0; i<3; i++)
if ( vertex(0) == t.vertex(i) )
break;
return (i<3) && vertex(1) == t.vertex(i+1) && vertex(2) == t.vertex(i+2);
}
template < class R >
inline
bool
TriangleCd<R CGAL_CTAG>::operator!=(const TriangleCd<R CGAL_CTAG> &t) const
{
return !(*this == t);
}
template < class R >
inline
int
TriangleCd<R CGAL_CTAG>::dimension() const
{
return vertex(0).dimension();
}
template < class R >
inline
long
TriangleCd<R CGAL_CTAG>::id() const
{
return (long) PTR;
}
template < class R >
typename TriangleCd<R CGAL_CTAG>::Point_d
TriangleCd<R CGAL_CTAG>::vertex(int i) const
{
if (i<0) i=(i%3)+3;
else if (i>2) i=i%3;
return (i==0) ? ptr()->e0 :
(i==1) ? ptr()->e1 :
ptr()->e2;
}
template < class R >
inline
typename TriangleCd<R CGAL_CTAG>::Point_d
TriangleCd<R CGAL_CTAG>::operator[](int i) const
{
return vertex(i);
}
template < class R >
inline
typename TriangleCd<R CGAL_CTAG>::Plane_d
TriangleCd<R CGAL_CTAG>::supporting_plane() const
{
CGAL_kernel_precondition( dimension()==3 );
Point_d v[3] = { vertex(0), vertex(1), vertex(2) };;
return Plane_d(v+0, v+3);
}
/*
template < class R >
Bbox_d
TriangleCd<R CGAL_CTAG>::bbox() const
{
return vertex(0).bbox() + vertex(1).bbox() + vertex(2).bbox();
}
*/
template < class R >
inline
TriangleCd<R CGAL_CTAG>
TriangleCd<R CGAL_CTAG>::
transform
(const typename TriangleCd<R CGAL_CTAG>::Aff_transformation_d &t) const
{
return TriangleCd<R CGAL_CTAG>(t.transform(vertex(0)),
t.transform(vertex(1)),
t.transform(vertex(2)));
}
template < class R >
bool
TriangleCd<R CGAL_CTAG>::
has_on(const typename TriangleCd<R CGAL_CTAG>::Point_d &p) const
{
// Can't check coplanar in any dimension (only 3), so this assumes
// that the kernel is 3 dimensional
Point_d o = vertex(0) + supporting_plane().orthogonal_vector();
Vector_d v0 = vertex(0)-o,
v1 = vertex(1)-o,
v2 = vertex(2)-o;
FT alpha, beta, gamma;
solve(v0, v1, v2, p-o, alpha, beta, gamma);
return (alpha >= FT(0)) && (beta >= FT(0)) && (gamma >= FT(0))
&& ((alpha+beta+gamma == FT(1)));
}
template < class R >
bool
TriangleCd<R CGAL_CTAG>::is_degenerate() const
{
return collinear(vertex(0),vertex(1),vertex(2));
}
#ifndef CGAL_NO_OSTREAM_INSERT_TRIANGLECD
template < class R >
std::ostream &
operator<<(std::ostream &os, const TriangleCd<R CGAL_CTAG> &t)
{
switch(os.iword(IO::mode)) {
case IO::ASCII :
return os << t[0] << ' ' << t[1] << ' ' << t[2];
case IO::BINARY :
return os << t[0] << t[1] << t[2];
default:
os << "TriangleCd(" << t[0] << ", " << t[1] << ", " << t[2] <<")";
return os;
}
}
#endif // CGAL_NO_OSTREAM_INSERT_TRIANGLECD
#ifndef CGAL_NO_ISTREAM_EXTRACT_TRIANGLECD
template < class R >
std::istream &
operator>>(std::istream &is, TriangleCd<R CGAL_CTAG> &t)
{
typename TriangleCd<R CGAL_CTAG>::Point_d p, q, r;
is >> p >> q >> r;
if (is)
t = TriangleCd<R CGAL_CTAG>(p, q, r);
return is;
}
#endif // CGAL_NO_ISTREAM_EXTRACT_TRIANGLECD
CGAL_END_NAMESPACE
#ifdef CGAL_CFG_TYPENAME_BUG
#undef typename
#endif
#endif // CGAL_CARTESIAN_TRIANGLE_D_C