cgal/Old_Packages/S2/include/CGAL/SimpleCartesian/TriangleS2.h

261 lines
6.8 KiB
C++

// ======================================================================
//
// Copyright (c) 1999 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------
// release :
// release_date : 2000, August 16
//
// source : webS2/S2.lw
// file : include/CGAL/SimpleCartesian/TriangleS2.h
// package : S2 (1.7)
// maintainer : Stefan Schirra <stschirr@mpi-sb.mpg.de>
// revision : 1.6
// revision_date : 27 Jun 2000
// author(s) : Stefan Schirra
// based on code by
// Andreas Fabri and
// Herve Brönnimann
//
// coordinator : MPI, Saarbrücken
// ======================================================================
#ifndef CGAL_TRIANGLES2_H
#define CGAL_TRIANGLES2_H
#include <CGAL/SimpleCartesian/predicates_on_pointsS2.h>
CGAL_BEGIN_NAMESPACE
template <class FT>
class TriangleS2
{
public:
TriangleS2() {}
TriangleS2(const PointS2<FT>& p,
const PointS2<FT>& q,
const PointS2<FT>& r);
bool operator==(const TriangleS2<FT>& s) const;
bool operator!=(const TriangleS2<FT>& s) const;
const PointS2<FT>& vertex(int i) const;
const PointS2<FT>& operator[](int i) const;
TriangleS2<FT> transform(const Aff_transformationS2<FT>& t) const;
Orientation orientation() const;
Oriented_side oriented_side(const PointS2<FT>& p) const;
Bounded_side bounded_side(const PointS2<FT>& p) const;
bool has_on_boundary(const PointS2<FT>& p) const;
bool has_on_bounded_side(const PointS2<FT>& p) const;
bool has_on_unbounded_side(const PointS2<FT>& p) const;
bool has_on_positive_side(const PointS2<FT>& p) const;
bool has_on_negative_side(const PointS2<FT>& p) const;
bool is_degenerate() const;
Bbox_2 bbox() const;
// private:
PointS2<FT> e0;
PointS2<FT> e1;
PointS2<FT> e2;
};
template < class FT >
CGAL_KERNEL_CTOR_INLINE
TriangleS2<FT>::TriangleS2(const PointS2<FT>& p,
const PointS2<FT>& q,
const PointS2<FT>& r)
: e0(p), e1(q), e2(r) {}
template < class FT >
CGAL_KERNEL_MEDIUM_INLINE
bool
TriangleS2<FT>::operator==(const TriangleS2<FT>& t) const
{
int i;
for(i=0; i<3; i++)
if ( vertex(0) == t.vertex(i) )
break;
return (i<3) && vertex(1) == t.vertex(i+1) && vertex(2) == t.vertex(i+2);
}
template < class FT >
inline
bool
TriangleS2<FT>::operator!=(const TriangleS2<FT>& t) const
{ return !(*this == t); }
template < class FT >
CGAL_KERNEL_MEDIUM_INLINE
const PointS2<FT>&
TriangleS2<FT>::vertex(int i) const
{
if (i>2) i = i%3;
else if (i<0) i = (i%3) + 3;
return (i==0) ? e0 :
(i==1) ? e1 :
e2 ;
}
template < class FT >
inline
const PointS2<FT>&
TriangleS2<FT>::operator[](int i) const
{ return vertex(i); }
template < class FT >
inline
Orientation
TriangleS2<FT>::orientation() const
{ return CGAL::orientation(e0,e1,e2); }
template < class FT >
CGAL_KERNEL_LARGE_INLINE
Bounded_side
TriangleS2<FT>::bounded_side(const PointS2<FT>& p) const
{
Orientation o1 = CGAL::orientation(vertex(0), vertex(1), p),
o2 = CGAL::orientation(vertex(1), vertex(2), p),
o3 = CGAL::orientation(vertex(2), vertex(3), p);
if (o2 == o1 && o3 == o1)
return ON_BOUNDED_SIDE;
return
(o1 == COLLINEAR
&& collinear_are_ordered_along_line(vertex(0), p, vertex(1))) ||
(o2 == COLLINEAR
&& collinear_are_ordered_along_line(vertex(1), p, vertex(2))) ||
(o3 == COLLINEAR
&& collinear_are_ordered_along_line(vertex(2), p, vertex(3)))
? ON_BOUNDARY
: ON_UNBOUNDED_SIDE;
}
template < class FT >
CGAL_KERNEL_LARGE_INLINE
Oriented_side
TriangleS2<FT>::oriented_side(const PointS2<FT>& p) const
{
// depends on the orientation of the vertices
Orientation o1 = CGAL::orientation(vertex(0), vertex(1), p),
o2 = CGAL::orientation(vertex(1), vertex(2), p),
o3 = CGAL::orientation(vertex(2), vertex(3), p),
ot = CGAL::orientation(vertex(0), vertex(1), vertex(2));
if (o1 == ot && o2 == ot && o3 == ot) // ot cannot be COLLINEAR
return Oriented_side(ot);
return
(o1 == COLLINEAR
&& collinear_are_ordered_along_line(vertex(0), p, vertex(1))) ||
(o2 == COLLINEAR
&& collinear_are_ordered_along_line(vertex(1), p, vertex(2))) ||
(o3 == COLLINEAR
&& collinear_are_ordered_along_line(vertex(2), p, vertex(3)))
? ON_ORIENTED_BOUNDARY
: Oriented_side(opposite(ot));
}
template < class FT >
CGAL_KERNEL_LARGE_INLINE
bool
TriangleS2<FT>::has_on_bounded_side(const PointS2<FT>& p) const
{ return bounded_side(p) == ON_BOUNDED_SIDE; }
template < class FT >
CGAL_KERNEL_LARGE_INLINE
bool
TriangleS2<FT>::has_on_unbounded_side(const PointS2<FT>& p) const
{ return bounded_side(p) == ON_UNBOUNDED_SIDE; }
template < class FT >
inline
bool
TriangleS2<FT>::has_on_boundary(const PointS2<FT>& p) const
{ return bounded_side(p) == ON_BOUNDARY; }
template < class FT >
inline
bool
TriangleS2<FT>::has_on_negative_side(const PointS2<FT>& p) const
{ return oriented_side(p) == ON_NEGATIVE_SIDE; }
template < class FT >
inline
bool
TriangleS2<FT>::has_on_positive_side(const PointS2<FT>& p) const
{ return oriented_side(p) == ON_POSITIVE_SIDE; }
template < class FT >
inline
bool
TriangleS2<FT>::is_degenerate() const
{ return collinear(vertex(0), vertex(1), vertex(2)); }
template < class FT >
inline
Bbox_2
TriangleS2<FT>::bbox() const
{ return vertex(0).bbox() + vertex(1).bbox() + vertex(2).bbox(); }
template < class FT >
inline
TriangleS2<FT>
TriangleS2<FT>::transform(const Aff_transformationS2<FT>& t) const
{
return TriangleS2<FT>(t.transform(vertex(0)),
t.transform(vertex(1)),
t.transform(vertex(2)));
}
#ifndef CGAL_NO_OSTREAM_INSERT_TRIANGLES2
template < class FT >
std::ostream& operator<<(std::ostream &os, const TriangleS2<FT> &t)
{
switch(os.iword(IO::mode)) {
case IO::ASCII :
return os << t[0] << ' ' << t[1] << ' ' << t[2];
case IO::BINARY :
return os << t[0] << t[1] << t[2];
default:
return os<< "TriangleS2(" << t[0] << ", " << t[1] << ", " << t[2] <<")";
}
}
#endif // CGAL_NO_OSTREAM_INSERT_TRIANGLES2
#ifndef CGAL_NO_ISTREAM_EXTRACT_TRIANGLES2
template < class FT >
std::istream& operator>>(std::istream &is, TriangleS2<FT> &t)
{
PointS2<FT> p, q, r;
is >> p >> q >> r;
t = TriangleS2<FT>(p, q, r);
return is;
}
#endif // CGAL_NO_ISTREAM_EXTRACT_TRIANGLES2
CGAL_END_NAMESPACE
#endif