mirror of https://github.com/CGAL/cgal
281 lines
7.4 KiB
C++
281 lines
7.4 KiB
C++
// ======================================================================
|
|
//
|
|
// Copyright (c) 1999 The CGAL Consortium
|
|
//
|
|
// This software and related documentation is part of an INTERNAL release
|
|
// of the Computational Geometry Algorithms Library (CGAL). It is not
|
|
// intended for general use.
|
|
//
|
|
// ----------------------------------------------------------------------
|
|
// release :
|
|
// release_date : 2000, October 15
|
|
//
|
|
// source : webS3/S3.lw
|
|
// file : include/CGAL/SimpleCartesian/TetrahedronS3.h
|
|
// package : S3 (1.7)
|
|
// maintainer : Stefan Schirra <stschirr@mpi-sb.mpg.de>
|
|
// revision : 1.7
|
|
// revision_date : 15 Oct 2000
|
|
// author(s) : Stefan Schirra <Stefan.Schirra@@mpi-sb.mpg.de>
|
|
// based on code by
|
|
// Andreas Fabri and
|
|
// Herve Brönnimann
|
|
//
|
|
// coordinator : MPI, Saarbrücken
|
|
// ======================================================================
|
|
|
|
#ifndef CGAL_TETRAHEDRONS3_H
|
|
#define CGAL_TETRAHEDRONS3_H
|
|
|
|
#include <CGAL/SimpleCartesian/PlaneS3.h>
|
|
#include <CGAL/solve.h>
|
|
#include <vector>
|
|
#include <CGAL/predicate_classes_3.h>
|
|
|
|
CGAL_BEGIN_NAMESPACE
|
|
|
|
template <class FT>
|
|
class TetrahedronS3
|
|
{
|
|
public:
|
|
TetrahedronS3() {}
|
|
TetrahedronS3(const PointS3<FT>& p,
|
|
const PointS3<FT>& q,
|
|
const PointS3<FT>& r,
|
|
const PointS3<FT>& s);
|
|
|
|
const PointS3<FT>& vertex(int i) const;
|
|
const PointS3<FT>& operator[](int i) const;
|
|
|
|
bool operator==(const TetrahedronS3<FT>& t) const;
|
|
bool operator!=(const TetrahedronS3<FT>& t) const;
|
|
long id() const;
|
|
|
|
Bbox_3 bbox() const;
|
|
|
|
TetrahedronS3<FT> transform(const Aff_transformationS3<FT>& t) const;
|
|
|
|
Orientation orientation() const;
|
|
Oriented_side oriented_side(const PointS3<FT>& p) const;
|
|
Bounded_side bounded_side(const PointS3<FT>& p) const;
|
|
|
|
bool has_on_boundary(const PointS3<FT>& p) const;
|
|
bool has_on_positive_side(const PointS3<FT>& p) const;
|
|
bool has_on_negative_side(const PointS3<FT>& p) const;
|
|
bool has_on_bounded_side(const PointS3<FT>& p) const;
|
|
bool has_on_unbounded_side(const PointS3<FT>& p) const;
|
|
|
|
bool is_degenerate() const;
|
|
|
|
// private:
|
|
PointS3<FT> e0;
|
|
PointS3<FT> e1;
|
|
PointS3<FT> e2;
|
|
PointS3<FT> e3;
|
|
};
|
|
|
|
|
|
template < class FT >
|
|
TetrahedronS3<FT>::TetrahedronS3(const PointS3<FT>& p,
|
|
const PointS3<FT>& q,
|
|
const PointS3<FT>& r,
|
|
const PointS3<FT>& s)
|
|
: e0(p), e1(q), e2(r), e3(s)
|
|
{}
|
|
|
|
|
|
template < class FT >
|
|
bool
|
|
TetrahedronS3<FT>::operator==(const TetrahedronS3<FT>& t) const
|
|
{
|
|
if ( orientation() != t.orientation() ) return false;
|
|
std::vector< PointS3<FT> > V1;
|
|
std::vector< PointS3<FT> > V2;
|
|
typename std::vector< PointS3<FT> >::iterator uniq_end1;
|
|
typename std::vector< PointS3<FT> >::iterator uniq_end2;
|
|
int k;
|
|
for ( k=0; k < 4; k++) V1.push_back( vertex(k));
|
|
for ( k=0; k < 4; k++) V2.push_back( t.vertex(k));
|
|
std::sort(V1.begin(), V1.end(), Less_xyz< PointS3<FT> >());
|
|
std::sort(V2.begin(), V2.end(), Less_xyz< PointS3<FT> >());
|
|
uniq_end1 = std::unique( V1.begin(), V1.end());
|
|
uniq_end2 = std::unique( V2.begin(), V2.end());
|
|
V1.erase( uniq_end1, V1.end());
|
|
V2.erase( uniq_end2, V2.end());
|
|
return V1 == V2;
|
|
}
|
|
|
|
|
|
template < class FT >
|
|
inline
|
|
bool
|
|
TetrahedronS3<FT>::operator!=(const TetrahedronS3<FT>& t) const
|
|
{ return !(*this == t); }
|
|
|
|
|
|
template < class FT >
|
|
const PointS3<FT>&
|
|
TetrahedronS3<FT>::vertex(int i) const
|
|
{
|
|
// modulo 4 is a logical operation, hence cheap
|
|
if (i<0) i=(i%4)+4;
|
|
else if (i>3) i=i%4;
|
|
switch (i)
|
|
{
|
|
case 0: return e0;
|
|
case 1: return e1;
|
|
case 2: return e2;
|
|
default: return e3;
|
|
}
|
|
}
|
|
|
|
|
|
template < class FT >
|
|
inline
|
|
const PointS3<FT>&
|
|
TetrahedronS3<FT>::operator[](int i) const
|
|
{ return vertex(i); }
|
|
|
|
template < class FT >
|
|
inline
|
|
bool
|
|
TetrahedronS3<FT>::has_on_boundary(const PointS3<FT>& p) const
|
|
{ return oriented_side(p) == ON_ORIENTED_BOUNDARY; }
|
|
|
|
|
|
template < class FT >
|
|
inline
|
|
bool
|
|
TetrahedronS3<FT>::has_on_positive_side(const PointS3<FT>& p) const
|
|
{ return oriented_side(p) == ON_POSITIVE_SIDE; }
|
|
|
|
|
|
template < class FT >
|
|
inline
|
|
bool
|
|
TetrahedronS3<FT>::has_on_negative_side(const PointS3<FT>& p) const
|
|
{ return oriented_side(p) == ON_NEGATIVE_SIDE; }
|
|
|
|
|
|
template < class FT >
|
|
inline
|
|
bool
|
|
TetrahedronS3<FT>::has_on_bounded_side(const PointS3<FT>& p) const
|
|
{ return oriented_side(p) == ON_BOUNDED_SIDE; }
|
|
|
|
|
|
template < class FT >
|
|
inline
|
|
bool
|
|
TetrahedronS3<FT>::has_on_unbounded_side(const PointS3<FT>& p) const
|
|
{ return oriented_side(p) == ON_UNBOUNDED_SIDE; }
|
|
|
|
template < class FT >
|
|
Orientation
|
|
TetrahedronS3<FT>::orientation() const
|
|
{ return CGAL::orientation(vertex(0), vertex(1), vertex(2), vertex(3)); }
|
|
|
|
template < class FT >
|
|
Oriented_side
|
|
TetrahedronS3<FT>::oriented_side(const PointS3<FT>& p) const
|
|
{
|
|
Orientation o = orientation();
|
|
if (o != ZERO)
|
|
return Oriented_side(o * bounded_side(p));
|
|
|
|
CGAL_assertion (!is_degenerate());
|
|
return ON_ORIENTED_BOUNDARY;
|
|
}
|
|
|
|
template < class FT >
|
|
Bounded_side
|
|
TetrahedronS3<FT>::bounded_side(const PointS3<FT>& p) const
|
|
{
|
|
FT alpha, beta, gamma;
|
|
VectorS3<FT> v0 = vertex(1)-vertex(0);
|
|
VectorS3<FT> v1 = vertex(2)-vertex(0);
|
|
VectorS3<FT> v2 = vertex(3)-vertex(0);
|
|
VectorS3<FT> v3 = p - vertex(0);
|
|
solve(v0.x(), v0.y(), v0.z(),
|
|
v1.x(), v1.y(), v1.z(),
|
|
v2.x(), v2.y(), v2.z(),
|
|
v3.x(), v3.y(), v3.z(),
|
|
alpha, beta, gamma);
|
|
|
|
if ( (alpha < FT(0)) || (beta < FT(0)) || (gamma < FT(0))
|
|
|| (alpha + beta + gamma > FT(1)) )
|
|
return ON_UNBOUNDED_SIDE;
|
|
|
|
if ( (alpha == FT(0)) || (beta == FT(0)) || (gamma == FT(0))
|
|
|| (alpha+beta+gamma == FT(1)) )
|
|
return ON_BOUNDARY;
|
|
|
|
return ON_BOUNDED_SIDE;
|
|
}
|
|
|
|
template < class FT >
|
|
bool
|
|
TetrahedronS3<FT>::is_degenerate() const
|
|
{
|
|
PlaneS3<FT> plane(vertex(0), vertex(1), vertex(2));
|
|
return (plane.is_degenerate()) ? true
|
|
: plane.has_on_boundary(vertex(3));
|
|
}
|
|
|
|
|
|
template < class FT >
|
|
inline
|
|
Bbox_3
|
|
TetrahedronS3<FT>::bbox() const
|
|
{
|
|
return vertex(0).bbox() + vertex(1).bbox()
|
|
+ vertex(2).bbox() + vertex(3).bbox();
|
|
}
|
|
|
|
|
|
template < class FT >
|
|
inline
|
|
TetrahedronS3<FT>
|
|
TetrahedronS3<FT>::transform(const Aff_transformationS3<FT>& t) const
|
|
{
|
|
return TetrahedronS3<FT>(t.transform(vertex(0)),
|
|
t.transform(vertex(1)),
|
|
t.transform(vertex(2)),
|
|
t.transform(vertex(3)));
|
|
}
|
|
|
|
#ifndef CGAL_NO_OSTREAM_INSERT_TETRAHEDRONS3
|
|
template < class FT >
|
|
std::ostream& operator<<(std::ostream& os, const TetrahedronS3<FT>& t)
|
|
{
|
|
switch(os.iword(IO::mode)) {
|
|
case IO::ASCII :
|
|
return os << t[0] << ' ' << t[1] << ' ' << t[2] << ' ' << t[3];
|
|
case IO::BINARY :
|
|
return os << t[0] << t[1] << t[2] << t[3];
|
|
default:
|
|
os << "TetrahedronS3(" << t[0] << ", " << t[1] << ", " << t[2] ;
|
|
os << ", " << t[3] << ")";
|
|
return os;
|
|
}
|
|
}
|
|
#endif // CGAL_NO_OSTREAM_INSERT_TETRAHEDRONS3
|
|
|
|
#ifndef CGAL_NO_ISTREAM_EXTRACT_TETRAHEDRONS3
|
|
template < class FT >
|
|
std::istream& operator>>(std::istream& is, TetrahedronS3<FT>& t)
|
|
{
|
|
PointS3<FT> p, q, r, s;
|
|
|
|
is >> p >> q >> r >> s;
|
|
|
|
t = TetrahedronS3<FT>(p, q, r, s);
|
|
return is;
|
|
}
|
|
#endif // CGAL_NO_ISTREAM_EXTRACT_TETRAHEDRONS3
|
|
|
|
|
|
CGAL_END_NAMESPACE
|
|
|
|
#endif
|