cgal/Old_Packages/S3/include/CGAL/SimpleCartesian/TriangleS3.h

198 lines
4.7 KiB
C++

// ======================================================================
//
// Copyright (c) 1999 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------
// release :
// release_date : 2000, October 15
//
// source : webS3/S3.lw
// file : include/CGAL/SimpleCartesian/TriangleS3.h
// package : S3 (1.7)
// maintainer : Stefan Schirra <stschirr@mpi-sb.mpg.de>
// revision : 1.7
// revision_date : 15 Oct 2000
// author(s) : Stefan Schirra <Stefan.Schirra@@mpi-sb.mpg.de>
// based on code by
// Andreas Fabri and
// Herve Brönnimann
//
// coordinator : MPI, Saarbrücken
// ======================================================================
#ifndef CGAL_TRIANGLES3_H
#define CGAL_TRIANGLES3_H
#include <CGAL/SimpleCartesian/PlaneS3.h>
#include <CGAL/solve.h>
CGAL_BEGIN_NAMESPACE
template <class FT>
class TriangleS3
{
public:
TriangleS3() {}
TriangleS3(const PointS3<FT>& p,
const PointS3<FT>& q,
const PointS3<FT>& r);
bool operator==(const TriangleS3<FT>& t) const;
bool operator!=(const TriangleS3<FT>& t) const;
PlaneS3<FT> supporting_plane() const;
TriangleS3 transform(const Aff_transformationS3<FT>& t) const;
bool has_on(const PointS3<FT>& p) const;
bool is_degenerate() const;
const PointS3<FT>& vertex(int i) const;
const PointS3<FT>& operator[](int i) const;
Bbox_3 bbox() const;
// private:
PointS3<FT> e0;
PointS3<FT> e1;
PointS3<FT> e2;
};
template < class FT >
TriangleS3<FT>::TriangleS3(const PointS3<FT>& p,
const PointS3<FT>& q,
const PointS3<FT>& r)
: e0(p), e1(q), e2(r)
{}
template < class FT >
bool
TriangleS3<FT>::operator==(const TriangleS3<FT>& t) const
{
int i;
for(i=0; i<3; i++)
if ( vertex(0) == t.vertex(i) )
break;
return (i<3) && vertex(1) == t.vertex(i+1) && vertex(2) == t.vertex(i+2);
}
template < class FT >
inline
bool
TriangleS3<FT>::operator!=(const TriangleS3<FT>& t) const
{ return !(*this == t); }
template < class FT >
const PointS3<FT>&
TriangleS3<FT>::vertex(int i) const
{
if (i<0) i=(i%3)+3;
else if (i>3) i=i%3;
return (i==0) ? e0 : (i==1) ? e1 : e2 ;
}
template < class FT >
inline
const PointS3<FT>&
TriangleS3<FT>::operator[](int i) const
{ return vertex(i); }
template < class FT >
inline
PlaneS3<FT>
TriangleS3<FT>::supporting_plane() const
{ return PlaneS3<FT>(vertex(0), vertex(1), vertex(2)); }
template < class FT >
Bbox_3
TriangleS3<FT>::bbox() const
{ return vertex(0).bbox() + vertex(1).bbox() + vertex(2).bbox(); }
template < class FT >
inline
TriangleS3<FT>
TriangleS3<FT>::transform(const Aff_transformationS3<FT>& t) const
{
return TriangleS3<FT>(t.transform(vertex(0)),
t.transform(vertex(1)),
t.transform(vertex(2)));
}
template < class FT >
bool
TriangleS3<FT>::has_on(const PointS3<FT>& p) const
{
PlaneS3<FT> sp = supporting_plane();
if ( ! sp.has_on_boundary(p)) return false;
PointS3<FT> o = vertex(0) + sp.orthogonal_vector();
FT alpha, beta, gamma;
VectorS3<FT> v0 = vertex(0)-o;
VectorS3<FT> v1 = vertex(1)-o;
VectorS3<FT> v2 = vertex(2)-o;
VectorS3<FT> v3 = p - o;
solve(v0.x(), v0.y(), v0.z(),
v1.x(), v1.y(), v1.z(),
v2.x(), v2.y(), v2.z(),
v3.x(), v3.y(), v3.z(),
alpha, beta, gamma);
return (alpha >= FT(0)) && (beta >= FT(0)) && (gamma >= FT(0))
&& ((alpha+beta+gamma == FT(1)));
}
template < class FT >
bool
TriangleS3<FT>::is_degenerate() const
{
return collinear(vertex(0),vertex(1),vertex(2));
}
#ifndef CGAL_NO_OSTREAM_INSERT_TRIANGLES3
template < class FT >
std::ostream& operator<<(std::ostream& os, const TriangleS3<FT>& t)
{
switch(os.iword(IO::mode)) {
case IO::ASCII :
return os << t[0] << ' ' << t[1] << ' ' << t[2];
case IO::BINARY :
return os << t[0] << t[1] << t[2];
default:
os << "TriangleS3(" << t[0] << ", " << t[1] << ", " << t[2] <<")";
return os;
}
}
#endif // CGAL_NO_OSTREAM_INSERT_TRIANGLES3
#ifndef CGAL_NO_ISTREAM_EXTRACT_TRIANGLES3
template < class FT >
std::istream& operator>>(std::istream& is, TriangleS3<FT>& t)
{
PointS3<FT> p, q, r;
is >> p >> q >> r;
t = TriangleS3<FT>(p, q, r);
return is;
}
#endif // CGAL_NO_ISTREAM_EXTRACT_TRIANGLES3
CGAL_END_NAMESPACE
#endif