cgal/Packages/Partition_2/include/CGAL/Rotation_tree_2.h

133 lines
3.5 KiB
C++

// ============================================================================
//
// Copyright (c) 2000 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------------
//
// release : $CGAL_Revision $
// release_date : $CGAL_Date $
//
// file : include/CGAL/Rotation_tree_2.h
// package : $CGAL_Package: Partition_2 $
// maintainer : Susan Hert <hert@mpi-sb.mpg.de>
// chapter : Planar Polygon Partitioning
//
// revision : $Revision$
// revision_date : $Date$
//
// author(s) : Susan Hert <hert@mpi-sb.mpg.de>
//
// coordinator : MPI (Susan Hert <hert@mpi-sb.mpg.de>)
//
// implementation: Rotation tree for vertex visibility graph computation
// ============================================================================
#ifndef CGAL_ROTATION_TREE_H
#define CGAL_ROTATION_TREE_H
#include <list>
#include <CGAL/ch_utils.h>
#include <CGAL/Rotation_tree_node_2.h>
namespace CGAL {
template <class Traits>
class Rotation_tree_2 : public std::list< Rotation_tree_node_2<Traits> >
{
public:
typedef Rotation_tree_2<Traits> Self;
typedef Rotation_tree_node_2<Traits> Node;
typedef typename Self::iterator Self_iterator;
typedef typename Traits::Point_2 Point_2;
// constructor
template<class ForwardIterator>
Rotation_tree_2(ForwardIterator first, ForwardIterator beyond);
// the point that comes first in the right-to-left ordering is first
// in the ordering, after the auxilliary points p_minus_inf and p_inf
Self_iterator rightmost_point_ref()
{
Self_iterator it = begin(); // p_minus_inf
it++; // p_inf
it++; // p_0
return it;
}
Self_iterator right_sibling(Self_iterator p)
{
if (!(*p).has_right_sibling()) return end();
return (*p).right_sibling();
}
Self_iterator left_sibling(Self_iterator p)
{
if (!(*p).has_left_sibling()) return end();
return (*p).left_sibling();
}
Self_iterator rightmost_child(Self_iterator p)
{
if (!(*p).has_children()) return end();
return (*p).rightmost_child();
}
Self_iterator parent(Self_iterator p)
{
if (!(*p).has_parent()) return end();
return (*p).parent();
}
bool parent_is_p_infinity(Self_iterator p)
{
return parent(p) == _p_inf;
}
bool parent_is_p_minus_infinity(Self_iterator p)
{
return parent(p) == _p_minus_inf;
}
// makes *p the parent of *q
void set_parent (Self_iterator p, Self_iterator q)
{
CGAL_assertion(q != end());
if (p == end())
(*q).clear_parent();
else
(*q).set_parent(p);
}
// makes *p the rightmost child of *q
void set_rightmost_child(Self_iterator p, Self_iterator q);
// makes *p the left sibling of *q
void set_left_sibling(Self_iterator p, Self_iterator q);
// makes p the right sibling of q
void set_right_sibling(Self_iterator p, Self_iterator q);
// NOTE: this function does not actually remove the node p from the
// list; it only reorganizes the pointers so this node is not
// in the tree structure anymore
void erase(Self_iterator p);
private:
Self_iterator _p_inf;
Self_iterator _p_minus_inf;
};
}
#ifdef CGAL_CFG_NO_AUTOMATIC_TEMPLATE_INCLUSION
#include <CGAL/Rotation_tree_2.C>
#endif // CGAL_CFG_NO_AUTOMATIC_TEMPLATE_INCLUSION
#endif // CGAL_ROTATION_TREE_H