cgal/Kinetic_data_structures/include/CGAL/Kinetic/Enclosing_box_3.h

290 lines
9.7 KiB
C++

// Copyright (c) 2005 Stanford University (USA).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Daniel Russel <drussel@alumni.princeton.edu>
#ifndef CGAL_KINETIC_ENCLOSING_BOX_3_H
#define CGAL_KINETIC_ENCLOSING_BOX_3_H
#include <CGAL/basic.h>
#include <CGAL/Kinetic/Ref_counted.h>
#include <CGAL/Kinetic/listeners.h>
#include <CGAL/Kinetic/Enclosing_box_3.h>
#include <CGAL/Kinetic/Event_base.h>
namespace CGAL { namespace Kinetic {
template <class EB3>
class Enclosing_box_bounce_event_3: public Event_base<EB3*>
{
public:
Enclosing_box_bounce_event_3(){}
Enclosing_box_bounce_event_3(EB3* eb,
typename EB3::Side s,
typename EB3::Point_key k,
typename EB3::NT t): eb_(eb),
k_(k),
t_(t),
s_(s) {
}
void process() {
eb_->bounce(k_, t_, s_);
}
std::ostream& write(std::ostream &out) const
{
out << "Bounce " << k_ << " off " << s_ << " at " << t_;
return out;
}
EB3* eb_;
typename EB3::Point_key k_;
typename EB3::NT t_;
typename EB3::Side s_;
};
template <class EB3>
std::ostream &operator<<(std::ostream &out, const Enclosing_box_bounce_event_3<EB3> &eb)
{
eb.write(out);
return out;
}
template <class Traits>
class Enclosing_box_3: public Ref_counted<Enclosing_box_3<Traits> >
{
typedef Enclosing_box_3<Traits> This;
typedef typename Traits::Simulator Simulator;
typedef typename Traits::Kinetic_kernel Kinetic_kernel;
typedef typename Traits::Active_points_3_table Active_points_3_table;
CGAL_KINETIC_DECLARE_AOT_LISTENER(typename Active_points_3_table);
typedef typename Simulator::Event_key Event_key;
typedef typename Simulator::Time Time;
typedef Enclosing_box_bounce_event_3<This> Event;
friend class Enclosing_box_bounce_event_3<This>;
typedef typename Simulator::Function_kernel::Function Fn;
typedef Fn Coordinate;
template <class It>
Coordinate make_coordinate(It b, It e) const {
return Coordinate(b,e);
}
public:
enum Side {TOP=0, BOTTOM=1, LEFT=2, RIGHT=3, FRONT=4, BACK=5};
typedef typename Active_points_3_table::Data Point;
typedef typename Active_points_3_table::Key Point_key;
typedef typename Fn::NT NT;
//typedef double NT;
Enclosing_box_3(Traits tr, NT xmin=-10, NT xmax=10, NT ymin=-10, NT ymax=10, NT zmin=-10, NT zmax=10):traits_(tr) {
CGAL_assertion(xmin<xmax);
CGAL_assertion(ymin<ymax);
CGAL_assertion(zmin<zmax);
bounds_[LEFT]=xmin;
bounds_[RIGHT]=xmax;
bounds_[TOP]=ymax;
bounds_[BOTTOM]=ymin;
bounds_[FRONT]=zmax;
bounds_[BACK]=zmin;
CGAL_KINETIC_INITIALIZE_AOT_LISTENER(tr.active_points_3_table_handle());
};
~Enclosing_box_3() {
for (typename std::map<Point_key, Event_key>::iterator it= certs_.begin(); it!= certs_.end(); ++it) {
traits_.simulator_handle()->delete_event(it->second);
}
}
void set(Point_key k) {
erase(k);
insert(k);
}
void insert(Point_key k) {
double tb=std::numeric_limits<double>::infinity();
Side bs= try_bound(LEFT, k, bs, tb);
bs= try_bound(RIGHT, k, bs, tb);
bs= try_bound(TOP, k, bs, tb);
bs= try_bound(BOTTOM, k, bs, tb);
bs= try_bound(FRONT, k, bs, tb);
bs= try_bound(BACK, k, bs, tb);
if (tb != std::numeric_limits<double>::infinity()) {
certs_[k]= traits_.simulator_handle()->new_event(tb, Event(this,bs,k,tb));
//std::cout << certs_[k] << std::endl;
}
/*std::cout << "Scheduled event for point " << k << " with motion " << traits_.active_points_3_table_handle()->at(k)
<< " for time " << tb << " on wall " << bs << std::endl;*/
}
void erase(Point_key k) {
if (certs_.find(k) != certs_.end()) {
traits_.simulator_handle()->delete_event(certs_[k]);
certs_.erase(k);
}
}
void bounce(Point_key k, NT time, Side s) {
CGAL_LOG(Log::LOTS, "Bouncing " << k << " off side " << s << std::endl);
certs_.erase(k);
std::vector<NT> coefs[3];
if (s==TOP || s== BOTTOM) {
coefs[0].insert(coefs[0].end(),
traits_.active_points_3_table_handle()->at(k).x().begin(),
traits_.active_points_3_table_handle()->at(k).x().end());
compute_bounce(traits_.active_points_3_table_handle()->at(k).y(),time, coefs[1]);
coefs[2].insert(coefs[2].end(),
traits_.active_points_3_table_handle()->at(k).z().begin(),
traits_.active_points_3_table_handle()->at(k).z().end());
}
else if (s==LEFT || s == RIGHT) {
compute_bounce(traits_.active_points_3_table_handle()->at(k).x(),time, coefs[0]);
coefs[1].insert(coefs[1].end(),
traits_.active_points_3_table_handle()->at(k).y().begin(),
traits_.active_points_3_table_handle()->at(k).y().end());
coefs[2].insert(coefs[2].end(),
traits_.active_points_3_table_handle()->at(k).z().begin(),
traits_.active_points_3_table_handle()->at(k).z().end());
}
else {
coefs[0].insert(coefs[0].end(),
traits_.active_points_3_table_handle()->at(k).x().begin(),
traits_.active_points_3_table_handle()->at(k).x().end());
coefs[1].insert(coefs[1].end(),
traits_.active_points_3_table_handle()->at(k).y().begin(),
traits_.active_points_3_table_handle()->at(k).y().end());
compute_bounce(traits_.active_points_3_table_handle()->at(k).z(),time, coefs[2]);
}
/*typename Traits::Simulator::Function_kernel::Create_function cf
= traits_.simulator_handle()->function_kernel().create_function_object();*/
Point pt(make_coordinate(coefs[0].begin(), coefs[0].end()),
make_coordinate(coefs[1].begin(), coefs[1].end()),
make_coordinate(coefs[2].begin(), coefs[2].end()));
//std::cout << "Changing motion from " << traits_.active_points_3_table_handle()->at(k) << " to " << pt << std::endl;
traits_.active_points_3_table_handle()->set(k, pt);
// CGAL_assertion(traits_.active_points_3_table_handle()->at(k) == pt);
}
protected:
typename Simulator::Function_kernel function_kernel_object() const
{
return traits_.kinetic_kernel_object().function_kernel_object();
}
Side try_bound(Side try_side, Point_key k,Side old_side, double& old_time) const
{
Coordinate nf;
NT bound=bounds_[try_side];
typename Kinetic_kernel::Certificate re;
if (try_side== TOP || try_side==BOTTOM) {
typename Kinetic_kernel::Compare_y_3 ily = traits_.kinetic_kernel_object().compare_y_3_object();
if (try_side== BOTTOM) {
re= ily(traits_.active_points_3_table_handle()->at(k), bound,
traits_.simulator_handle()->current_time(), traits_.simulator_handle()->end_time());
} else {
re= ily(bound, traits_.active_points_3_table_handle()->at(k),
traits_.simulator_handle()->current_time(), traits_.simulator_handle()->end_time());
}
} else if (try_side == LEFT || try_side == RIGHT) {
typename Kinetic_kernel::Compare_x_3 ily = traits_.kinetic_kernel_object().compare_x_3_object();
if (try_side== LEFT) {
re= ily(traits_.active_points_3_table_handle()->at(k), bound,
traits_.simulator_handle()->current_time(), traits_.simulator_handle()->end_time());
} else {
re= ily(bound, traits_.active_points_3_table_handle()->at(k),
traits_.simulator_handle()->current_time(), traits_.simulator_handle()->end_time());
}
} else {
typename Kinetic_kernel::Compare_z_3 ily = traits_.kinetic_kernel_object().compare_z_3_object();
if (try_side== BACK) {
re= ily(traits_.active_points_3_table_handle()->at(k), bound,
traits_.simulator_handle()->current_time(), traits_.simulator_handle()->end_time());
} else {
re= ily(bound, traits_.active_points_3_table_handle()->at(k),
traits_.simulator_handle()->current_time(), traits_.simulator_handle()->end_time());
}
}
if (re.will_fail()) {
CGAL_LOG(Log::LOTS, "Side fails at " << re.failure_time() << std::endl);
double dv= CGAL::to_interval(re.failure_time()).first;
if (dv < old_time) {
old_time=dv;
return try_side;
} else {
return old_side;
}
} else {
return old_side;
}
}
void compute_bounce(const Coordinate& f, NT t, std::vector<NT> &out) {
// x is contant
// v is negative v
// higher order coefs on constant
// out(time)=f(time)
// out'(time)= -f'(time)
typename Simulator::Function_kernel::Differentiate cd
= function_kernel_object().differentiate_object();
if (f.degree() >=2) {
std::vector<NT> hcoefs(f.begin(), f.end());
hcoefs[0]=0;
hcoefs[1]=0;
Coordinate fh(hcoefs.begin(), hcoefs.end());
Coordinate dfh= cd(fh);
out.push_back(f[0]+2*f[1]*t+2*t*dfh(t));
out.push_back(-f[1]-2*dfh(t));
out.insert(out.end(), f.begin()+2, f.end());
}
else {
NT v= -cd(f)(t);
NT x= f(t);
out.push_back(x-v*t);
out.push_back(v);
//out.push_back(x);
}
/*{
Function ft(out.begin(), out.end());
NT nt= ft(t);
NT ot= f(t);
NT nd= cd(ft)(t);
NT od= cd(f)(t);
}*/
CGAL_exactness_assertion_code(Coordinate ft(out.begin(), out.end()););
CGAL_exactness_assertion(ft(t) == f(t));
CGAL_exactness_assertion(cd(ft)(t) == -cd(f)(t));
}
NT bounds_[6];
Traits traits_;
std::map<Point_key, Event_key> certs_;
};
} } //namespace CGAL::Kinetic
#endif