mirror of https://github.com/CGAL/cgal
793 lines
25 KiB
C++
793 lines
25 KiB
C++
// Copyright (c) 2013 Technical University Braunschweig (Germany).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org).
|
|
// You can redistribute it and/or modify it under the terms of the GNU
|
|
// General Public License as published by the Free Software Foundation,
|
|
// either version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
//
|
|
//
|
|
// Author(s): Francisc Bungiu <fbungiu@gmail.com>
|
|
// Michael Hemmer <michael.hemmer@cgal.org>
|
|
|
|
#ifndef CGAL_SIMPLE_VISIBILITY_2_H
|
|
#define CGAL_SIMPLE_VISIBILITY_2_H
|
|
|
|
#include <CGAL/Arrangement_2.h>
|
|
#include <CGAL/tags.h>
|
|
#include <CGAL/enum.h>
|
|
#include <stack>
|
|
|
|
namespace CGAL {
|
|
|
|
namespace Visibility_2 {
|
|
|
|
template<class Arrangement_2, class RegularizationTag>
|
|
class Simple_visibility_2 {
|
|
|
|
public:
|
|
typedef typename Arrangement_2::Geometry_traits_2 Geometry_traits_2;
|
|
// Currently only consider with same type for both
|
|
typedef Arrangement_2 Input_arrangement_2;
|
|
typedef Arrangement_2 Output_arrangement_2;
|
|
typedef RegularizationTag Regularization_tag;
|
|
|
|
typedef typename Arrangement_2::Halfedge_const_handle Halfedge_const_handle;
|
|
typedef typename Arrangement_2::Halfedge_handle Halfedge_handle;
|
|
typedef typename Arrangement_2::Ccb_halfedge_const_circulator
|
|
Ccb_halfedge_const_circulator;
|
|
typedef typename Arrangement_2::Face_const_handle Face_const_handle;
|
|
|
|
typedef typename Geometry_traits_2::Point_2 Point_2;
|
|
typedef typename Geometry_traits_2::Ray_2 Ray_2;
|
|
typedef typename Geometry_traits_2::Segment_2 Segment_2;
|
|
typedef typename Geometry_traits_2::Line_2 Line_2;
|
|
typedef typename Geometry_traits_2::Vector_2 Vector_2;
|
|
typedef typename Geometry_traits_2::Direction_2 Direction_2;
|
|
typedef typename Geometry_traits_2::FT Number_type;
|
|
typedef typename Geometry_traits_2::Object_2 Object_2;
|
|
|
|
Simple_visibility_2() : p_arr(NULL), geom_traits(NULL) {};
|
|
|
|
/*! Constructor given an arrangement and the Regularization tag. */
|
|
Simple_visibility_2(const Input_arrangement_2 &arr):
|
|
p_arr(&arr) {
|
|
geom_traits = p_arr->geometry_traits();
|
|
};
|
|
|
|
bool is_attached() {
|
|
return (p_arr != NULL);
|
|
}
|
|
|
|
void attach(const Input_arrangement_2 &arr) {
|
|
p_arr = &arr;
|
|
geom_traits = p_arr->geometry_traits();
|
|
}
|
|
|
|
void detach() {
|
|
p_arr = NULL;
|
|
geom_traits = NULL;
|
|
vertices.clear();
|
|
}
|
|
|
|
Input_arrangement_2 arr() {
|
|
return *p_arr;
|
|
}
|
|
|
|
void visibility_region(Point_2 &q, const Face_const_handle face,
|
|
Output_arrangement_2 &out_arr) {
|
|
|
|
typename Input_arrangement_2::Ccb_halfedge_const_circulator circ =
|
|
face->outer_ccb();
|
|
typename Input_arrangement_2::Ccb_halfedge_const_circulator curr = circ;
|
|
typename Input_arrangement_2::Halfedge_const_handle he = curr;
|
|
|
|
std::vector<Point_2> temp_vertices;
|
|
Point_2 min_intersect_pt;
|
|
bool intersect_on_endpoint = false;
|
|
|
|
Segment_2 curr_edge(he->source()->point(), he->target()->point());
|
|
Segment_2 curr_min_edge(he->source()->point(), he->target()->point());
|
|
Point_2 curr_vertex = he->target()->point();
|
|
min_intersect_pt =
|
|
Construct_projected_point_2(curr_min_edge.supporting_line(), q);
|
|
|
|
temp_vertices.push_back(curr_vertex);
|
|
Number_type min_dist = Compute_squared_distance_2(q, curr_edge);
|
|
|
|
int min_dist_index = 0;
|
|
int index = 1;
|
|
|
|
curr++;
|
|
// Push all vertices and determine edge minimum in terms
|
|
// of squared distance to query point
|
|
do {
|
|
he = curr;
|
|
curr_edge = Segment_2(he->source()->point(), he->target()->point());
|
|
Number_type curr_dist = Compute_squared_distance_2(q, curr_edge);
|
|
|
|
if (curr_dist < min_dist) {
|
|
min_dist = curr_dist;
|
|
min_dist_index = index;
|
|
curr_min_edge = curr_edge;
|
|
}
|
|
temp_vertices.push_back(he->target()->point());
|
|
index++;
|
|
} while (++curr != circ);
|
|
|
|
// Only now compute the intersection point
|
|
min_intersect_pt =
|
|
Construct_projected_point_2(curr_min_edge.supporting_line(), q);
|
|
|
|
if (min_intersect_pt != curr_min_edge.source() &&
|
|
min_intersect_pt != curr_min_edge.target()) {
|
|
vertices.push_back(min_intersect_pt);
|
|
}
|
|
|
|
// Now create vector so that first vertex v0 is visible
|
|
for (unsigned int k = min_dist_index ; k < temp_vertices.size() ; k++) {
|
|
vertices.push_back(temp_vertices[k]);
|
|
}
|
|
for (unsigned int k = 0 ; k < min_dist_index ; k++) {
|
|
vertices.push_back(temp_vertices[k]);
|
|
}
|
|
|
|
// Push first vertex again to fulfill algo precondition
|
|
if (min_intersect_pt != curr_min_edge.source() &&
|
|
min_intersect_pt != curr_min_edge.target()) {
|
|
vertices.push_back(min_intersect_pt);
|
|
}
|
|
else {
|
|
vertices.push_back(vertices[0]);
|
|
}
|
|
|
|
std::cout << "VERTICES: " << vertices.size() << std::endl;
|
|
for(unsigned int i = 0 ; i < vertices.size() ; i++) {
|
|
std::cout << vertices[i] << std::endl;
|
|
}
|
|
|
|
visibility_region_impl(q);
|
|
|
|
typename std::vector<Point_2> points;
|
|
if (!s.empty()) {
|
|
Point_2 prev_pt = s.top();
|
|
if (prev_pt == min_intersect_pt) {
|
|
s.pop();
|
|
if (!s.empty()) {
|
|
prev_pt = s.top();
|
|
points.push_back(prev_pt);
|
|
}
|
|
}
|
|
if (!s.empty()) {
|
|
s.pop();
|
|
}
|
|
while(!s.empty()) {
|
|
Point_2 curr_pt = s.top();
|
|
if (curr_pt == min_intersect_pt) {
|
|
s.pop();
|
|
}
|
|
else {
|
|
points.push_back(curr_pt);
|
|
prev_pt = curr_pt;
|
|
s.pop();
|
|
}
|
|
}
|
|
}
|
|
|
|
std::reverse(points.begin(), points.end());
|
|
std::vector<Segment_2> segments;
|
|
treat_needles(q, points, segments);
|
|
CGAL::insert_non_intersecting_curves(out_arr,
|
|
segments.begin(),
|
|
segments.end());
|
|
CGAL_precondition(out_arr.number_of_isolated_vertices() == 0);
|
|
CGAL_precondition(s.size() == 0);
|
|
conditional_regularize(out_arr, Regularization_tag());
|
|
vertices.clear();
|
|
}
|
|
|
|
void visibility_region(const Point_2 &q, const Halfedge_const_handle he,
|
|
Output_arrangement_2 &out_arr ) {
|
|
|
|
if (q != he->source()->point()) {
|
|
if (q != he->target()->point()) {
|
|
s.push(q);
|
|
vertices.push_back(he->target()->point());
|
|
}
|
|
else {
|
|
vertices.push_back(q);
|
|
}
|
|
}
|
|
else {
|
|
vertices.push_back(q);
|
|
vertices.push_back(he->target()->point());
|
|
}
|
|
|
|
typename Input_arrangement_2::Face_const_handle face = he->face();
|
|
typename Input_arrangement_2::Ccb_halfedge_const_circulator circ =
|
|
face->outer_ccb();
|
|
typename Input_arrangement_2::Ccb_halfedge_const_circulator curr;
|
|
typename Input_arrangement_2::Halfedge_const_handle he_handle = circ;
|
|
|
|
while (he_handle != he) {
|
|
he_handle = circ;
|
|
circ++;
|
|
}
|
|
|
|
curr = circ;
|
|
curr++;
|
|
|
|
he_handle = curr;
|
|
vertices.push_back(Point_2(he_handle->source()->point()));
|
|
|
|
while (curr != circ) {
|
|
he_handle = curr;
|
|
Point_2 curr_vertex = he_handle->target()->point();
|
|
vertices.push_back(curr_vertex);
|
|
curr++;
|
|
}
|
|
vertices.push_back(q);
|
|
|
|
std::cout << "VERTICES: " << vertices.size() << std::endl;
|
|
for(unsigned int i = 0 ; i < vertices.size() ; i++) {
|
|
std::cout << vertices[i] << std::endl;
|
|
}
|
|
|
|
visibility_region_impl(q);
|
|
|
|
typename std::vector<Point_2> points;
|
|
if (!s.empty()) {
|
|
Point_2 prev_pt = s.top();
|
|
if (prev_pt != q) {
|
|
points.push_back(prev_pt);
|
|
}
|
|
if (!s.empty()) {
|
|
s.pop();
|
|
}
|
|
while(!s.empty()) {
|
|
Point_2 curr_pt = s.top();
|
|
if (curr_pt != q) {
|
|
points.push_back(curr_pt);
|
|
}
|
|
s.pop();
|
|
}
|
|
}
|
|
|
|
std::reverse(points.begin(), points.end());
|
|
std::vector<Segment_2> segments;
|
|
treat_needles(q, points, segments);
|
|
CGAL::insert_non_intersecting_curves(out_arr,
|
|
segments.begin(),
|
|
segments.end());
|
|
CGAL_precondition(out_arr.number_of_isolated_vertices() == 0);
|
|
CGAL_precondition(s.size() == 0);
|
|
conditional_regularize(out_arr, Regularization_tag());
|
|
vertices.clear();
|
|
}
|
|
|
|
void print_arrangement(const Arrangement_2 &arr) {
|
|
typedef typename Arrangement_2::Edge_const_iterator Edge_const_iterator;
|
|
Edge_const_iterator eit;
|
|
std::cout << arr.number_of_edges() << " edges:" << std::endl;
|
|
for (eit = arr.edges_begin(); eit != arr.edges_end(); ++eit)
|
|
std::cout << "[" << eit->curve() << "]" << std::endl;
|
|
}
|
|
|
|
private:
|
|
const Input_arrangement_2 *p_arr;
|
|
const Geometry_traits_2 *geom_traits;
|
|
std::stack<Point_2> s;
|
|
std::vector<Point_2> vertices;
|
|
enum {LEFT, RIGHT, SCANA, SCANB, SCANC, SCAND, FINISH} upcase;
|
|
|
|
bool LessDistanceToPoint_2(const Point_2 &p, const Point_2 &q,
|
|
const Point_2 &r) const {
|
|
typename Geometry_traits_2::Less_distance_to_point_2 less_dist =
|
|
geom_traits->less_distance_to_point_2_object();
|
|
return less_dist(p, q, r);
|
|
}
|
|
|
|
bool Collinear(const Point_2 &p, const Point_2 &q,
|
|
const Point_2 &r) const {
|
|
typename Geometry_traits_2::Collinear_2 collinear_fnct =
|
|
geom_traits->collinear_2_object();
|
|
return collinear_fnct(p, q, r);
|
|
}
|
|
|
|
template < class _Curve_first, class _Curve_second >
|
|
Object_2 Intersect_2(const _Curve_first &s1, const _Curve_second &s2) {
|
|
typedef typename Geometry_traits_2::Kernel Kernel;
|
|
const Kernel *kernel = static_cast<const Kernel*> (geom_traits);
|
|
typename Kernel::Intersect_2 intersect_fnct =
|
|
kernel->intersect_2_object();
|
|
return intersect_fnct(s1, s2);
|
|
}
|
|
|
|
Orientation Orientation_2(const Point_2 &p, const Point_2 &q,
|
|
const Point_2 &r) {
|
|
typename Geometry_traits_2::Orientation_2 orient =
|
|
geom_traits->orientation_2_object();
|
|
return orient(p, q, r);
|
|
}
|
|
|
|
Point_2 Construct_projected_point_2(const Line_2 &l, const Point_2 &p) {
|
|
typename Geometry_traits_2::Construct_projected_point_2 construct_proj =
|
|
geom_traits->construct_projected_point_2_object();
|
|
return construct_proj(l, p);
|
|
}
|
|
|
|
Number_type Compute_squared_distance_2(const Point_2 &p,
|
|
const Segment_2 &seg) {
|
|
typename Geometry_traits_2::Compute_squared_distance_2 compute_dist =
|
|
geom_traits->compute_squared_distance_2_object();
|
|
return compute_dist(p, seg);
|
|
}
|
|
|
|
bool do_overlap(const Point_2 &a, const Point_2 &b, const Point_2 &c) {
|
|
if (collinear(a, b, c)) {
|
|
Segment_2 s1(a, b);
|
|
Segment_2 s2(a, c);
|
|
const Segment_2 *seg_overlap;
|
|
Object_2 result = Intersect_2<Segment_2, Segment_2>(s1, s2);
|
|
if (seg_overlap = CGAL::object_cast<Segment_2>(&result)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void conditional_regularize(Output_arrangement_2 &out_arr, CGAL::Tag_true) {
|
|
regularize_output(out_arr);
|
|
}
|
|
|
|
void conditional_regularize(Output_arrangement_2 &out_arr, CGAL::Tag_false) {
|
|
//do nothing
|
|
}
|
|
|
|
void regularize_output(Output_arrangement_2 &out_arr) {
|
|
typename Output_arrangement_2::Edge_iterator e_itr;
|
|
for (e_itr = out_arr.edges_begin() ;
|
|
e_itr != out_arr.edges_end() ; e_itr++) {
|
|
|
|
Halfedge_handle he = e_itr;
|
|
Halfedge_handle he_twin = he->twin();
|
|
if (he->face() == he_twin->face()) {
|
|
out_arr.remove_edge(he);
|
|
}
|
|
}
|
|
}
|
|
|
|
void treat_needles(const Point_2 &q, typename std::vector<Point_2> &points,
|
|
typename std::vector<Segment_2> &segments) {
|
|
|
|
typename std::vector<Point_2>::size_type i = 0;
|
|
|
|
while (CGAL::collinear(points[i], points[points.size()-1],
|
|
points[points.size()-2]) ||
|
|
CGAL::collinear(points[i], points[i+1], points[points.size()-1])) {
|
|
|
|
points.push_back(points[i]);
|
|
i++;
|
|
}
|
|
|
|
points.push_back(points[i]);
|
|
|
|
std::vector<Point_2> forward_needle;
|
|
std::vector<Point_2> backward_needle;
|
|
|
|
while (i+1 < points.size()) {
|
|
if ((i+2 < points.size()) &&
|
|
(Orientation_2(points[i],
|
|
points[i+1],
|
|
points[i+2]) == CGAL::COLLINEAR)) {
|
|
|
|
Point_2 needle_start = points[i];
|
|
Direction_2 forward_dir(Segment_2(points[i], points[i+1]));
|
|
forward_needle.push_back(points[i]);
|
|
forward_needle.push_back(points[i+1]);
|
|
|
|
while ((i+2 < points.size()) &&
|
|
(Orientation_2(points[i],
|
|
points[i+1],
|
|
points[i+2]) == CGAL::COLLINEAR)) {
|
|
|
|
Direction_2 check_dir(Segment_2(points[i+1], points[i+2]));
|
|
if (forward_dir == check_dir) {
|
|
forward_needle.push_back(points[i+2]);
|
|
}
|
|
else if (check_dir == -forward_dir) {
|
|
backward_needle.push_back(points[i+2]);
|
|
}
|
|
i++;
|
|
}
|
|
std::reverse(backward_needle.begin(), backward_needle.end());
|
|
|
|
std::vector<Point_2> merged_needle;
|
|
|
|
// Now merge the two vectors
|
|
unsigned int itr_fst = 0, itr_snd = 0;
|
|
while (itr_fst < forward_needle.size() &&
|
|
itr_snd < backward_needle.size()) {
|
|
|
|
if (LessDistanceToPoint_2(q, forward_needle[itr_fst],
|
|
backward_needle[itr_snd])) {
|
|
merged_needle.push_back(forward_needle[itr_fst]);
|
|
itr_fst++;
|
|
}
|
|
else {
|
|
merged_needle.push_back(backward_needle[itr_snd]);
|
|
itr_snd++;
|
|
}
|
|
}
|
|
while (itr_fst < forward_needle.size()) {
|
|
merged_needle.push_back(forward_needle[itr_fst]);
|
|
itr_fst++;
|
|
}
|
|
while (itr_snd < backward_needle.size()) {
|
|
merged_needle.push_back(backward_needle[itr_snd]);
|
|
itr_snd++;
|
|
}
|
|
for (unsigned int p = 0 ; p+1 < merged_needle.size() ; p++) {
|
|
segments.push_back(Segment_2(merged_needle[p], merged_needle[p+1]));
|
|
}
|
|
}
|
|
else {
|
|
segments.push_back(Segment_2(points[i], points[i+1]));
|
|
}
|
|
i++;
|
|
}
|
|
}
|
|
|
|
void visibility_region_impl(const Point_2 &q) {
|
|
|
|
int i = 0;
|
|
Point_2 w;
|
|
|
|
if (Orientation_2(q, vertices[0], vertices[1]) == CGAL::LEFT_TURN) {
|
|
upcase = LEFT;
|
|
i = 1;
|
|
w = vertices[1];
|
|
s.push(vertices[0]);
|
|
s.push(vertices[1]);
|
|
}
|
|
else {
|
|
upcase = SCANA;
|
|
i = 1;
|
|
w = vertices[1];
|
|
s.push(vertices[0]);
|
|
}
|
|
|
|
do {
|
|
switch(upcase) {
|
|
case LEFT:
|
|
left(i, w, q);
|
|
break;
|
|
case RIGHT:
|
|
right(i, w, q);
|
|
break;
|
|
case SCANA:
|
|
scana(i, w, q);
|
|
break;
|
|
case SCANB:
|
|
scanb(i, w, q);
|
|
break;
|
|
case SCANC:
|
|
scanc(i, w, q);
|
|
break;
|
|
case SCAND:
|
|
scand(i, w, q);
|
|
break;
|
|
}
|
|
if (upcase == LEFT) {
|
|
// Check if (s_t-1, s_t) intersects (q, vn)
|
|
Point_2 s_t = s.top();
|
|
s.pop();
|
|
Point_2 s_t_prev = s.top();
|
|
Segment_2 s1(s_t_prev, s_t);
|
|
Segment_2 s2(q, vertices[vertices.size()-1]);
|
|
Object_2 result = Intersect_2<Segment_2, Segment_2>(s1, s2);
|
|
|
|
if (const Point_2 *ipoint = CGAL::object_cast<Point_2>(&result)) {
|
|
Segment_2 s3(s_t_prev, vertices[i]);
|
|
Object_2 result2 = Intersect_2<Segment_2, Segment_2>(s3, s2);
|
|
if (const Point_2 *vertex_new = CGAL::object_cast<Point_2>(&result2)){
|
|
if ((*vertex_new) != (s_t_prev) && (*vertex_new != s_t)) {
|
|
upcase = SCANB;
|
|
s.push(*vertex_new);
|
|
}
|
|
else { // Do not alter stack if it doesn't intersect - push back s_t
|
|
s.push(s_t);
|
|
}
|
|
}
|
|
else {
|
|
s.push(s_t);
|
|
}
|
|
}
|
|
else {
|
|
s.push(s_t);
|
|
}
|
|
}
|
|
} while(upcase != FINISH);
|
|
}
|
|
|
|
void left(int &i, Point_2 &w, const Point_2 &query_pt) {
|
|
if (i == vertices.size() - 1) {
|
|
upcase = FINISH;
|
|
}
|
|
else if (Orientation_2(query_pt,
|
|
vertices[i],
|
|
vertices[i+1]) == CGAL::LEFT_TURN) {
|
|
upcase = LEFT;
|
|
s.push(vertices[i+1]);
|
|
w = vertices[i+1];
|
|
i++;
|
|
}
|
|
else if (Orientation_2(query_pt,
|
|
vertices[i],
|
|
vertices[i+1]) == CGAL::RIGHT_TURN) {
|
|
Point_2 s_t = s.top();
|
|
s.pop();
|
|
Point_2 s_t_prev = s.top();
|
|
s.pop();
|
|
if (Orientation_2(s_t_prev,
|
|
vertices[i],
|
|
vertices[i+1]) == CGAL::RIGHT_TURN) {
|
|
upcase = SCANA;
|
|
w = vertices[i+1];
|
|
i++;
|
|
} // Both conditions have to be met to move on. Thus same else branch as below
|
|
else {
|
|
upcase = RIGHT;
|
|
w = vertices[i];
|
|
i++;
|
|
}
|
|
s.push(s_t_prev);
|
|
s.push(s_t);
|
|
}
|
|
else {
|
|
upcase = RIGHT;
|
|
i++;
|
|
w = vertices[i];
|
|
}
|
|
}
|
|
|
|
void right(int &i, Point_2 &w, const Point_2 &query_pt) {
|
|
// Scan s_t, s_t-1, ..., s_1, s_0 for the first edge (s_j, s_j-1) such that
|
|
// (a) (z, s_j, v_i) is a right turn and (z, s_j-1, v_i) is a left turn, or
|
|
// (b) (z, s_j-1, s_j) is a forward move and (v_i-1, v_i) intersects (s_j-1, s_j)
|
|
bool found = false;
|
|
while(!found && !s.empty()) {
|
|
Point_2 s_j = s.top();
|
|
s.pop();
|
|
if (!s.empty()) {
|
|
Point_2 s_j_prev = s.top();
|
|
// Check condition (a)
|
|
if ((Orientation_2(query_pt,
|
|
s_j,
|
|
vertices[i]) == CGAL::RIGHT_TURN) &&
|
|
(Orientation_2(query_pt,
|
|
s_j_prev,
|
|
vertices[i]) == CGAL::LEFT_TURN)) {
|
|
found = true;
|
|
Segment_2 s1(s_j_prev, s_j);
|
|
Ray_2 s2(query_pt, vertices[i]);
|
|
Object_2 result = Intersect_2<Segment_2, Ray_2>(s1, s2);
|
|
if (const Point_2 *ipoint = CGAL::object_cast<Point_2>(&result)) {
|
|
s_j = *ipoint;
|
|
}
|
|
|
|
if (Orientation_2(query_pt,
|
|
vertices[i],
|
|
vertices[i+1]) == CGAL::RIGHT_TURN) {
|
|
upcase = RIGHT;
|
|
s.push(s_j);
|
|
w = vertices[i];
|
|
i++;
|
|
}
|
|
else if ((Orientation_2(query_pt,
|
|
vertices[i],
|
|
vertices[i+1]) == CGAL::LEFT_TURN) &&
|
|
(Orientation_2(vertices[i-1],
|
|
vertices[i],
|
|
vertices[i+1]) == CGAL::RIGHT_TURN)) {
|
|
upcase = LEFT;
|
|
s.push(s_j);
|
|
s.push(vertices[i]);
|
|
s.push(vertices[i+1]);
|
|
w = vertices[i+1];
|
|
i++;
|
|
}
|
|
else {
|
|
upcase = SCANC;
|
|
s.push(s_j);
|
|
w = vertices[i];
|
|
i++;
|
|
}
|
|
}
|
|
else if (do_overlap(query_pt, s_j_prev, s_j)) { // Case (b)
|
|
// Check if v_i-1, v_i intersects (s_j-1, s_j)
|
|
Segment_2 s1(s_j_prev, s_j);
|
|
Segment_2 s2(vertices[i-1], vertices[i]);
|
|
Object_2 result = Intersect_2<Segment_2, Segment_2>(s1, s2);
|
|
if (const Point_2 *ipoint = CGAL::object_cast<Point_2>(&result)) {
|
|
// Keep s_j off the stack
|
|
found = true;
|
|
upcase = SCAND;
|
|
w = *ipoint;
|
|
}
|
|
}
|
|
else if ((Orientation_2(query_pt,
|
|
s_j,
|
|
vertices[i]) == CGAL::RIGHT_TURN) &&
|
|
(Orientation_2(query_pt,
|
|
s_j_prev,
|
|
vertices[i]) == CGAL::COLLINEAR)) {
|
|
found = true;
|
|
upcase = LEFT;
|
|
s.push(vertices[i]);
|
|
s.push(vertices[i+1]);
|
|
w = vertices[i+1];
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void scana(int &i, Point_2 &w, const Point_2 &query_pt) {
|
|
// Scan v_i, v_i+1, ..., v_n for the first edge to intersect (z, s_t)
|
|
bool found = false;
|
|
int k = i;
|
|
Point_2 intersection_pt;
|
|
while (k+1 < vertices.size()) {
|
|
Segment_2 s1(vertices[k], vertices[k+1]);
|
|
Ray_2 s2(query_pt, s.top());
|
|
Object_2 result = Intersect_2<Segment_2, Ray_2>(s1, s2);
|
|
if (const Point_2 *ipoint = CGAL::object_cast<Point_2>(&result)) {
|
|
found = true;
|
|
intersection_pt = *ipoint;
|
|
break;
|
|
}
|
|
k++;
|
|
}
|
|
if (found) {
|
|
if ((Orientation_2(query_pt,
|
|
vertices[k],
|
|
vertices[k+1]) == CGAL::RIGHT_TURN) &&
|
|
(!do_overlap(query_pt, s.top(), intersection_pt))) {
|
|
|
|
upcase = RIGHT;
|
|
i = k+1;
|
|
w = intersection_pt;
|
|
}
|
|
else if ((Orientation_2(query_pt,
|
|
vertices[k],
|
|
vertices[k+1]) == CGAL::RIGHT_TURN) &&
|
|
(do_overlap(query_pt, s.top(), intersection_pt))) {
|
|
|
|
upcase = SCAND;
|
|
i = k+1;
|
|
w = intersection_pt;
|
|
}
|
|
else if ((Orientation_2(query_pt,
|
|
vertices[k],
|
|
vertices[k+1]) == CGAL::LEFT_TURN) &&
|
|
(do_overlap(query_pt, s.top(), intersection_pt))) {
|
|
|
|
upcase = LEFT;
|
|
i = k+1;
|
|
s.push(intersection_pt);
|
|
if (intersection_pt != vertices[k+1]) {
|
|
s.push(vertices[k+1]);
|
|
}
|
|
w = vertices[k+1];
|
|
}
|
|
else {
|
|
// This case never occurs
|
|
}
|
|
}
|
|
}
|
|
|
|
void scanb(int &i, Point_2 &w, const Point_2 &query_pt) {
|
|
// Scan v_i, v_i+1, ..., v_n-1, v_n for the first edge to intersect (s_t, v_n]
|
|
Point_2 s_t = s.top();
|
|
int k = i;
|
|
bool found = false;
|
|
Point_2 intersection_pt;
|
|
while (k+1 < vertices.size()) {
|
|
Segment_2 s1(vertices[k], vertices[k+1]);
|
|
Segment_2 s2(s_t, vertices[vertices.size()-1]);
|
|
Object_2 result = Intersect_2<Segment_2, Segment_2>(s1, s2);
|
|
if (const Point_2 *ipoint = CGAL::object_cast<Point_2>(&result)) {
|
|
if (*ipoint != s_t) {
|
|
intersection_pt = *ipoint;
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
k++;
|
|
}
|
|
if (found) {
|
|
if ((intersection_pt == vertices[k+1]) &&
|
|
(intersection_pt == vertices[vertices.size()-1])) {
|
|
|
|
upcase = FINISH;
|
|
w = vertices[vertices.size()-1];
|
|
s.push(vertices[vertices.size()-1]);
|
|
}
|
|
else {
|
|
upcase = RIGHT;
|
|
i = k+1;
|
|
w = intersection_pt;
|
|
}
|
|
}
|
|
else {
|
|
upcase = LEFT;
|
|
i++;
|
|
}
|
|
}
|
|
|
|
void scanc(int &i,Point_2 &w, const Point_2 &query_pt) {
|
|
// Scan v_i, v_i+1, ..., v_n-1, v_n for the first edge to intersect (s_t, w)
|
|
Point_2 s_t = s.top();
|
|
int k = i;
|
|
bool found = false;
|
|
Point_2 intersection_pt;
|
|
while (k+1 < vertices.size()) {
|
|
Segment_2 s1(vertices[k], vertices[k+1]);
|
|
Segment_2 s2(s_t, w);
|
|
Object_2 result = Intersect_2<Segment_2, Segment_2>(s1, s2);
|
|
if (const Point_2 *ipoint = CGAL::object_cast<Point_2>(&result)) {
|
|
found = true;
|
|
intersection_pt = *ipoint;
|
|
break;
|
|
}
|
|
k++;
|
|
}
|
|
if (found) {
|
|
upcase = RIGHT;
|
|
i = k+1;
|
|
w = intersection_pt;
|
|
}
|
|
}
|
|
|
|
void scand(int &i, Point_2 &w, const Point_2 &query_pt) {
|
|
// Scan v_i, v_i+1, v_n-1, v_n for the fist edge to intersect (s_t, w)
|
|
Point_2 s_t = s.top();
|
|
int k = i;
|
|
bool found = false;
|
|
Point_2 intersection_pt;
|
|
while (k+1 < vertices.size()) {
|
|
Segment_2 s1(vertices[k], vertices[k+1]);
|
|
Segment_2 s2(s_t, w);
|
|
Object_2 result = Intersect_2<Segment_2, Segment_2>(s1, s2);
|
|
if (const Point_2 *ipoint = CGAL::object_cast<Point_2>(&result)) {
|
|
found = true;
|
|
intersection_pt = *ipoint;
|
|
break;
|
|
}
|
|
k++;
|
|
}
|
|
if (found) {
|
|
upcase = LEFT;
|
|
i = k+1;
|
|
s.push(intersection_pt);
|
|
s.push(vertices[k+1]);
|
|
w = vertices[k+1];
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace Visibility_2
|
|
} // namespace CGAL
|
|
|
|
#endif
|