mirror of https://github.com/CGAL/cgal
419 lines
12 KiB
C++
419 lines
12 KiB
C++
// Copyright (c) 2005 Tel-Aviv University (Israel).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org); you may redistribute it under
|
|
// the terms of the Q Public License version 1.0.
|
|
// See the file LICENSE.QPL distributed with CGAL.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
//
|
|
//
|
|
// Author(s) : Ron Wein <wein@post.tau.ac.il>
|
|
// Baruch Zukerman <baruchzu@post.tau.ac.il>
|
|
|
|
#ifndef CGAL_ARR_CIRCLE_TRAITS_2_H
|
|
#define CGAL_ARR_CIRCLE_TRAITS_2_H
|
|
|
|
/*! \file
|
|
* The circle traits-class for the arrangement package.
|
|
*/
|
|
|
|
#include <CGAL/tags.h>
|
|
#include <CGAL/Arr_traits_2/Circular_arc_2.h>
|
|
|
|
#include <fstream>
|
|
|
|
CGAL_BEGIN_NAMESPACE
|
|
|
|
/*! \class
|
|
* A traits class for maintaining an arrangement of circles.
|
|
*/
|
|
template <class Kernel_>
|
|
class Arr_circle_traits_2
|
|
{
|
|
public:
|
|
|
|
typedef Kernel_ Kernel;
|
|
typedef typename Kernel::FT NT;
|
|
typedef _Circle_point_2<NT> Point_2;
|
|
typedef typename Point_2::CoordNT CoorNT;
|
|
typedef _Rat_circle_2<Kernel> Curve_2;
|
|
typedef _Circular_arc_2<Kernel> X_monotone_curve_2;
|
|
|
|
// Category tags:
|
|
typedef Tag_true Has_left_category;
|
|
typedef Tag_false Has_merge_category;
|
|
|
|
public:
|
|
|
|
/// \name Basic functor definitions.
|
|
//@{
|
|
|
|
class Compare_x_2
|
|
{
|
|
public:
|
|
/*!
|
|
* Compare the x-coordinates of two points.
|
|
* \param p1 The first point.
|
|
* \param p2 The second point.
|
|
* \return LARGER if x(p1) > x(p2);
|
|
* SMALLER if x(p1) < x(p2);
|
|
* EQUAL if x(p1) = x(p2).
|
|
*/
|
|
Comparison_result operator() (const Point_2& p1, const Point_2& p2) const
|
|
{
|
|
return (CGAL::compare (p1.x(), p2.x()));
|
|
}
|
|
};
|
|
|
|
/*! Get a Compare_x_2 functor object. */
|
|
Compare_x_2 compare_x_2_object () const
|
|
{
|
|
return Compare_x_2();
|
|
}
|
|
|
|
class Compare_xy_2
|
|
{
|
|
public:
|
|
/*!
|
|
* Compares two points lexigoraphically: by x, then by y.
|
|
* \param p1 The first point.
|
|
* \param p2 The second point.
|
|
* \return LARGER if x(p1) > x(p2), or if x(p1) = x(p2) and y(p1) > y(p2);
|
|
* SMALLER if x(p1) < x(p2), or if x(p1) = x(p2) and y(p1) < y(p2);
|
|
* EQUAL if the two points are equal.
|
|
*/
|
|
Comparison_result operator() (const Point_2& p1, const Point_2& p2) const
|
|
{
|
|
Comparison_result res = CGAL::compare (p1.x(), p2.x());
|
|
|
|
if (res != EQUAL)
|
|
return (res);
|
|
|
|
return (CGAL::compare (p1.y(), p2.y()));
|
|
}
|
|
};
|
|
|
|
/*! Get a Compare_xy_2 functor object. */
|
|
Compare_xy_2 compare_xy_2_object () const
|
|
{
|
|
return Compare_xy_2();
|
|
}
|
|
|
|
class Construct_min_vertex_2
|
|
{
|
|
public:
|
|
/*!
|
|
* Get the left endpoint of the x-monotone curve (segment).
|
|
* \param cv The curve.
|
|
* \return The left endpoint.
|
|
*/
|
|
const Point_2& operator() (const X_monotone_curve_2 & cv) const
|
|
{
|
|
return (cv.left());
|
|
}
|
|
};
|
|
|
|
/*! Get a Construct_min_vertex_2 functor object. */
|
|
Construct_min_vertex_2 construct_min_vertex_2_object () const
|
|
{
|
|
return Construct_min_vertex_2();
|
|
}
|
|
|
|
class Construct_max_vertex_2
|
|
{
|
|
public:
|
|
/*!
|
|
* Get the right endpoint of the x-monotone curve (segment).
|
|
* \param cv The curve.
|
|
* \return The right endpoint.
|
|
*/
|
|
const Point_2& operator() (const X_monotone_curve_2 & cv) const
|
|
{
|
|
return (cv.right());
|
|
}
|
|
};
|
|
|
|
/*! Get a Construct_max_vertex_2 functor object. */
|
|
Construct_max_vertex_2 construct_max_vertex_2_object () const
|
|
{
|
|
return Construct_max_vertex_2();
|
|
}
|
|
|
|
class Is_vertical_2
|
|
{
|
|
public:
|
|
/*!
|
|
* Check whether the given x-monotone curve is a vertical segment.
|
|
* \param cv The curve.
|
|
* \return (true) if the curve is a vertical segment; (false) otherwise.
|
|
*/
|
|
bool operator() (const X_monotone_curve_2& cv) const
|
|
{
|
|
// A circular arc can never be vertical:
|
|
return (false);
|
|
}
|
|
};
|
|
|
|
/*! Get an Is_vertical_2 functor object. */
|
|
Is_vertical_2 is_vertical_2_object () const
|
|
{
|
|
return Is_vertical_2();
|
|
}
|
|
|
|
class Compare_y_at_x_2
|
|
{
|
|
public:
|
|
/*!
|
|
* Return the location of the given point with respect to the input curve.
|
|
* \param cv The curve.
|
|
* \param p The point.
|
|
* \pre p is in the x-range of cv.
|
|
* \return SMALLER if y(p) < cv(x(p)), i.e. the point is below the curve;
|
|
* LARGER if y(p) > cv(x(p)), i.e. the point is above the curve;
|
|
* EQUAL if p lies on the curve.
|
|
*/
|
|
Comparison_result operator() (const Point_2& p,
|
|
const X_monotone_curve_2& cv) const
|
|
{
|
|
CGAL_precondition (cv.is_in_x_range (p));
|
|
|
|
return (cv.point_position (p));
|
|
}
|
|
};
|
|
|
|
/*! Get a Compare_y_at_x_2 functor object. */
|
|
Compare_y_at_x_2 compare_y_at_x_2_object () const
|
|
{
|
|
return Compare_y_at_x_2();
|
|
}
|
|
|
|
class Compare_y_at_x_right_2
|
|
{
|
|
public:
|
|
/*!
|
|
* Compares the y value of two x-monotone curves immediately to the right
|
|
* of their intersection point.
|
|
* \param cv1 The first curve.
|
|
* \param cv2 The second curve.
|
|
* \param p The intersection point.
|
|
* \pre The point p lies on both curves, and both of them must be also be
|
|
* defined (lexicographically) to its right.
|
|
* \return The relative position of cv1 with respect to cv2 immdiately to
|
|
* the right of p: SMALLER, LARGER or EQUAL.
|
|
*/
|
|
Comparison_result operator() (const X_monotone_curve_2& cv1,
|
|
const X_monotone_curve_2& cv2,
|
|
const Point_2& p) const
|
|
{
|
|
// Make sure that p lies on both curves, and that both are defined to its
|
|
// right (so their right endpoint is lexicographically larger than p).
|
|
CGAL_precondition (cv1.point_position (p) == EQUAL &&
|
|
cv2.point_position (p) == EQUAL);
|
|
|
|
CGAL_precondition (CGAL::compare (p.x(), cv1.right().x()) == SMALLER &&
|
|
CGAL::compare (p.x(), cv2.right().x()) == SMALLER);
|
|
|
|
// Compare the two curves immediately to the right of p:
|
|
return (cv1.compare_to_right (cv2, p));
|
|
}
|
|
};
|
|
|
|
/*! Get a Compare_y_at_x_right_2 functor object. */
|
|
Compare_y_at_x_right_2 compare_y_at_x_right_2_object () const
|
|
{
|
|
return Compare_y_at_x_right_2();
|
|
}
|
|
|
|
class Compare_y_at_x_left_2
|
|
{
|
|
public:
|
|
/*!
|
|
* Compares the y value of two x-monotone curves immediately to the left
|
|
* of their intersection point.
|
|
* \param cv1 The first curve.
|
|
* \param cv2 The second curve.
|
|
* \param p The intersection point.
|
|
* \pre The point p lies on both curves, and both of them must be also be
|
|
* defined (lexicographically) to its left.
|
|
* \return The relative position of cv1 with respect to cv2 immdiately to
|
|
* the left of p: SMALLER, LARGER or EQUAL.
|
|
*/
|
|
Comparison_result operator() (const X_monotone_curve_2& cv1,
|
|
const X_monotone_curve_2& cv2,
|
|
const Point_2& p) const
|
|
{
|
|
// Make sure that p lies on both curves, and that both are defined to its
|
|
// left (so their left endpoint is lexicographically smaller than p).
|
|
CGAL_precondition (cv1.point_position (p) == EQUAL &&
|
|
cv2.point_position (p) == EQUAL);
|
|
|
|
CGAL_precondition (CGAL::compare (p.x(), cv1.left().x()) == LARGER &&
|
|
CGAL::compare (p.x(), cv2.left().x()) == LARGER);
|
|
|
|
// Compare the two curves immediately to the left of p:
|
|
return (cv1.compare_to_left (cv2, p));
|
|
}
|
|
};
|
|
|
|
/*! Get a Compare_y_at_x_left_2 functor object. */
|
|
Compare_y_at_x_left_2 compare_y_at_x_left_2_object () const
|
|
{
|
|
return Compare_y_at_x_left_2();
|
|
}
|
|
|
|
class Equal_2
|
|
{
|
|
public:
|
|
/*!
|
|
* Check if the two x-monotone curves are the same (have the same graph).
|
|
* \param cv1 The first curve.
|
|
* \param cv2 The second curve.
|
|
* \return (true) if the two curves are the same; (false) otherwise.
|
|
*/
|
|
bool operator() (const X_monotone_curve_2& cv1,
|
|
const X_monotone_curve_2& cv2) const
|
|
{
|
|
if (&cv1 == &cv2)
|
|
return (true);
|
|
|
|
return (cv1.equals (cv2));
|
|
}
|
|
|
|
/*!
|
|
* Check if the two points are the same.
|
|
* \param p1 The first point.
|
|
* \param p2 The second point.
|
|
* \return (true) if the two point are the same; (false) otherwise.
|
|
*/
|
|
bool operator() (const Point_2& p1, const Point_2& p2) const
|
|
{
|
|
if (&p1 == &p2)
|
|
return (true);
|
|
|
|
return (p1.equals (p2));
|
|
}
|
|
};
|
|
|
|
/*! Get an Equal_2 functor object. */
|
|
Equal_2 equal_2_object () const
|
|
{
|
|
return Equal_2();
|
|
}
|
|
//@}
|
|
|
|
/// \name Functor definitions for supporting intersections.
|
|
//@{
|
|
|
|
class Make_x_monotone_2
|
|
{
|
|
public:
|
|
|
|
/*!
|
|
* Cut the given conic curve (or conic arc) into x-monotone subcurves
|
|
* and insert them to the given output iterator.
|
|
* \param cv The curve.
|
|
* \param oi The output iterator, whose value-type is Object. The returned
|
|
* objects are all wrappers X_monotone_curve_2 objects.
|
|
* \return The past-the-end iterator.
|
|
*/
|
|
template<class OutputIterator>
|
|
OutputIterator operator() (const Curve_2& circ, OutputIterator oi)
|
|
{
|
|
CGAL::Sign sign_rad = CGAL::sign (circ.radius());
|
|
CGAL_precondition (sign_rad != NEGATIVE);
|
|
|
|
if (sign_rad == POSITIVE)
|
|
{
|
|
// Subdivide the circle into an upper arc and a lower arc.
|
|
*oi = make_object (X_monotone_curve_2 (circ, true));
|
|
++oi;
|
|
*oi = make_object (X_monotone_curve_2 (circ, false));
|
|
++oi;
|
|
}
|
|
else
|
|
{
|
|
// Create an isolated point.
|
|
*oi = make_object (Point_2 (circ.center().x(), circ.center().y()));
|
|
++oi;
|
|
}
|
|
|
|
return (oi);
|
|
}
|
|
};
|
|
|
|
/*! Get a Make_x_monotone_2 functor object. */
|
|
Make_x_monotone_2 make_x_monotone_2_object ()
|
|
{
|
|
return Make_x_monotone_2();
|
|
}
|
|
|
|
class Split_2
|
|
{
|
|
public:
|
|
/*!
|
|
* Split a given x-monotone curve at a given point into two sub-curves.
|
|
* \param cv The curve to split
|
|
* \param p The split point.
|
|
* \param c1 Output: The left resulting subcurve (p is its right endpoint).
|
|
* \param c2 Output: The right resulting subcurve (p is its left endpoint).
|
|
* \pre p lies on cv but is not one of its end-points.
|
|
*/
|
|
void operator() (const X_monotone_curve_2& cv, const Point_2& p,
|
|
X_monotone_curve_2& c1, X_monotone_curve_2& c2) const
|
|
{
|
|
CGAL_precondition (cv.is_in_x_range (p) &&
|
|
! p.equals (cv.source()) && ! p.equals (cv.target()));
|
|
|
|
cv.split (p, c1, c2);
|
|
return;
|
|
}
|
|
};
|
|
|
|
/*! Get a Split_2 functor object. */
|
|
Split_2 split_2_object () const
|
|
{
|
|
return Split_2();
|
|
}
|
|
|
|
class Intersect_2
|
|
{
|
|
public:
|
|
|
|
/*!
|
|
* Find the intersections of the two given curves and insert them to the
|
|
* given output iterator. As two segments may itersect only once, only a
|
|
* single will be contained in the iterator.
|
|
* \param cv1 The first curve.
|
|
* \param cv2 The second curve.
|
|
* \param oi The output iterator.
|
|
* \return The past-the-end iterator.
|
|
*/
|
|
template<class OutputIterator>
|
|
OutputIterator operator() (const X_monotone_curve_2& cv1,
|
|
const X_monotone_curve_2& cv2,
|
|
OutputIterator oi)
|
|
{
|
|
return (cv1.intersect (cv2, oi));
|
|
}
|
|
};
|
|
|
|
/*! Get an Intersect_2 functor object. */
|
|
Intersect_2 intersect_2_object ()
|
|
{
|
|
return Intersect_2();
|
|
}
|
|
|
|
};
|
|
|
|
CGAL_END_NAMESPACE
|
|
|
|
#endif
|