mirror of https://github.com/CGAL/cgal
180 lines
5.4 KiB
C++
180 lines
5.4 KiB
C++
// Copyright (c) 2000 Max-Planck-Institute Saarbruecken (Germany).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org); you may redistribute it under
|
|
// the terms of the Q Public License version 1.0.
|
|
// See the file LICENSE.QPL distributed with CGAL.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
//
|
|
//
|
|
// Author(s) : Susan Hert <hert@mpi-sb.mpg.de>
|
|
|
|
/*
|
|
A rotation tree for computing the vertex visibility graph of a set of
|
|
non-intersecting segments in the plane (e.g. edges of a polygon).
|
|
|
|
Let $V$ be the set of segment endpoints and
|
|
let $p_{\infinity}$ ($p_{-\infinity}$) be a point with $y$ coordinate
|
|
$\infinity$ ($-\infinity$) and $x$ coordinate larger than all points
|
|
in $V$. The tree $G$ is a tree with node set
|
|
$V \cup \{p_{\infinity}, p_{-\infinity}\}$. Every node (except the one
|
|
corresponding to $p_{\infinity}$) has exactly one outgoing edge to the
|
|
point $q$ with the following property: $q$ is the first point encountered
|
|
when looking from $p$ in direction $d$ and rotating counterclockwise.
|
|
*/
|
|
|
|
#ifndef CGAL_ROTATION_TREE_H
|
|
#define CGAL_ROTATION_TREE_H
|
|
|
|
// MSVC6 doesn't work with the CGALi::vector but it does with the std::vector
|
|
// (from stlport?)
|
|
#if (defined( _MSC_VER) && (_MSC_VER <= 1200)) || defined(__BORLANDC__)
|
|
#include <vector>
|
|
#else
|
|
#include <CGAL/vector.h>
|
|
#endif // MSVC6
|
|
#include <CGAL/Rotation_tree_node_2.h>
|
|
#include <CGAL/functional.h>
|
|
|
|
namespace CGAL {
|
|
|
|
template <class Traits_>
|
|
#if (defined( _MSC_VER) && (_MSC_VER <= 1200)) || defined(__BORLANDC__)
|
|
class Rotation_tree_2 : public std::vector< Rotation_tree_node_2<Traits_> >
|
|
#else
|
|
class Rotation_tree_2 : public CGALi::vector< Rotation_tree_node_2<Traits_> >
|
|
#endif // MSVC 6
|
|
{
|
|
public:
|
|
typedef Traits_ Traits;
|
|
typedef Rotation_tree_node_2<Traits> Node;
|
|
#if (defined( _MSC_VER) && (_MSC_VER <= 1200)) || defined(__BORLANDC__)
|
|
typedef typename std::vector<Node>::iterator Self_iterator;
|
|
#else
|
|
typedef typename CGALi::vector<Node>::iterator Self_iterator;
|
|
#endif // MSVC6
|
|
typedef typename Traits::Point_2 Point_2;
|
|
|
|
|
|
// constructor
|
|
template<class ForwardIterator>
|
|
Rotation_tree_2(ForwardIterator first, ForwardIterator beyond)
|
|
{
|
|
for (ForwardIterator it = first; it != beyond; it++)
|
|
push_back(*it);
|
|
|
|
std::sort(this->begin(), this->end(), swap_1(Traits().less_xy_2_object()));
|
|
std::unique(this->begin(), this->end());
|
|
|
|
// front() is the point with the largest x coordinate
|
|
|
|
// push the point p_minus_infinity; the coordinates should never be used
|
|
push_back(Point_2( 1, -1));
|
|
|
|
// push the point p_infinity; the coordinates should never be used
|
|
push_back(Point_2(1, 1));
|
|
|
|
_p_inf = this->end(); // record the iterators to these extreme points
|
|
_p_inf--;
|
|
_p_minus_inf = _p_inf;
|
|
_p_minus_inf--;
|
|
|
|
Self_iterator child;
|
|
// make p_minus_inf a child of p_inf
|
|
set_rightmost_child(_p_minus_inf, _p_inf);
|
|
child = this->begin(); // now points to p_0
|
|
while (child != _p_minus_inf) // make all points children of p_minus_inf
|
|
{
|
|
set_rightmost_child(child, _p_minus_inf);
|
|
child++;
|
|
}
|
|
}
|
|
|
|
|
|
// the point that comes first in the right-to-left ordering is first
|
|
// in the ordering, after the auxilliary points p_minus_inf and p_inf
|
|
Self_iterator rightmost_point_ref()
|
|
{
|
|
return this->begin();
|
|
}
|
|
|
|
Self_iterator right_sibling(Self_iterator p)
|
|
{
|
|
if (!(*p).has_right_sibling()) return this->end();
|
|
return (*p).right_sibling();
|
|
}
|
|
|
|
Self_iterator left_sibling(Self_iterator p)
|
|
{
|
|
if (!(*p).has_left_sibling()) return this->end();
|
|
return (*p).left_sibling();
|
|
}
|
|
|
|
Self_iterator rightmost_child(Self_iterator p)
|
|
{
|
|
if (!(*p).has_children()) return this->end();
|
|
return (*p).rightmost_child();
|
|
}
|
|
|
|
Self_iterator parent(Self_iterator p)
|
|
{
|
|
if (!(*p).has_parent()) return this->end();
|
|
return (*p).parent();
|
|
}
|
|
|
|
bool parent_is_p_infinity(Self_iterator p)
|
|
{
|
|
return parent(p) == _p_inf;
|
|
}
|
|
|
|
bool parent_is_p_minus_infinity(Self_iterator p)
|
|
{
|
|
return parent(p) == _p_minus_inf;
|
|
}
|
|
|
|
// makes *p the parent of *q
|
|
void set_parent (Self_iterator p, Self_iterator q)
|
|
{
|
|
CGAL_assertion(q != this->end());
|
|
if (p == this->end())
|
|
(*q).clear_parent();
|
|
else
|
|
(*q).set_parent(p);
|
|
}
|
|
|
|
// makes *p the rightmost child of *q
|
|
void set_rightmost_child(Self_iterator p, Self_iterator q);
|
|
|
|
// makes *p the left sibling of *q
|
|
void set_left_sibling(Self_iterator p, Self_iterator q);
|
|
|
|
// makes *p the right sibling of *q
|
|
void set_right_sibling(Self_iterator p, Self_iterator q);
|
|
|
|
// NOTE: this function does not actually remove the node p from the
|
|
// list; it only reorganizes the pointers so this node is not
|
|
// in the tree structure anymore
|
|
void erase(Self_iterator p);
|
|
|
|
private:
|
|
Self_iterator _p_inf;
|
|
Self_iterator _p_minus_inf;
|
|
};
|
|
|
|
}
|
|
|
|
#ifdef CGAL_CFG_NO_AUTOMATIC_TEMPLATE_INCLUSION
|
|
#include <CGAL/Rotation_tree_2.C>
|
|
#endif // CGAL_CFG_NO_AUTOMATIC_TEMPLATE_INCLUSION
|
|
|
|
|
|
#endif // CGAL_ROTATION_TREE_H
|