mirror of https://github.com/CGAL/cgal
181 lines
5.5 KiB
C++
181 lines
5.5 KiB
C++
// Copyright (c) 2012 INRIA Bordeaux Sud-Ouest (France), All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public License as
|
|
// published by the Free Software Foundation; either version 3 of the License,
|
|
// or (at your option) any later version.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
//
|
|
// Author(s) : Gael Guennebaud
|
|
|
|
#ifndef CGAL_EIGEN_SOLVER_TRAITS_H
|
|
#define CGAL_EIGEN_SOLVER_TRAITS_H
|
|
|
|
#include <CGAL/basic.h> // include basic.h before testing #defines
|
|
#include <Eigen/Sparse>
|
|
#if EIGEN_VERSION_AT_LEAST(3, 1, 91)
|
|
#include <Eigen/SparseLU>
|
|
#endif
|
|
#if defined(CGAL_SUPERLU_ENABLED)
|
|
#include <Eigen/SuperLUSupport>
|
|
#endif
|
|
|
|
#include <CGAL/Eigen_matrix.h>
|
|
#include <CGAL/Eigen_vector.h>
|
|
#include <boost/shared_ptr.hpp>
|
|
|
|
namespace CGAL {
|
|
|
|
|
|
namespace internal {
|
|
template <class EigenSolver,class FT>
|
|
struct Get_eigen_matrix{
|
|
typedef Eigen_sparse_matrix<FT> type;
|
|
};
|
|
|
|
template <class FT,class EigenMatrix>
|
|
struct Get_eigen_matrix< ::Eigen::ConjugateGradient<EigenMatrix>,FT>{
|
|
typedef Eigen_sparse_symmetric_matrix<FT> type;
|
|
};
|
|
|
|
template <class FT,class EigenMatrix>
|
|
struct Get_eigen_matrix< ::Eigen::SimplicialCholesky<EigenMatrix>,FT>{
|
|
typedef Eigen_sparse_symmetric_matrix<FT> type;
|
|
};
|
|
#if EIGEN_VERSION_AT_LEAST(3, 1, 91)
|
|
template <class FT, class EigenMatrix, class EigenOrdering>
|
|
struct Get_eigen_matrix< ::Eigen::SparseLU<EigenMatrix, EigenOrdering >, FT> {
|
|
typedef Eigen_sparse_matrix<FT> type;
|
|
};
|
|
#endif
|
|
} //internal
|
|
|
|
/// The class Eigen_solver_traits
|
|
/// is a generic traits class for solving asymmetric or symmetric positive definite (SPD)
|
|
/// sparse linear systems using one of the Eigen solvers.
|
|
/// The default solver is the iterative bi-congugate gradient stabilized solver
|
|
/// Eigen::BiCGSTAB for double.
|
|
///
|
|
/// @heading Is Model for the Concepts: Model of the SparseLinearAlgebraTraits_d concept.
|
|
|
|
template<class EigenSolverT = Eigen::BiCGSTAB<Eigen_sparse_matrix<double>::EigenType> >
|
|
class Eigen_solver_traits
|
|
{
|
|
typedef typename EigenSolverT::Scalar Scalar;
|
|
// Public types
|
|
public:
|
|
typedef Scalar NT;
|
|
typedef typename internal::Get_eigen_matrix<EigenSolverT,NT>::type Matrix;
|
|
typedef Eigen_vector<Scalar> Vector;
|
|
|
|
|
|
// Public operations
|
|
public:
|
|
|
|
Eigen_solver_traits():m_mat(NULL), m_solver_sptr(new EigenSolverT)
|
|
{
|
|
}
|
|
|
|
EigenSolverT& solver() { return *m_solver_sptr; }
|
|
|
|
/// Solve the sparse linear system "A*X = B".
|
|
/// Return true on success. The solution is then (1/D) * X.
|
|
///
|
|
/// @commentheading Preconditions:
|
|
/// - A.row_dimension() == B.dimension().
|
|
/// - A.column_dimension() == X.dimension().
|
|
bool linear_solver(const Matrix& A, const Vector& B, Vector& X, NT& D)
|
|
{
|
|
D = 1; // Eigen does not support homogeneous coordinates
|
|
|
|
m_solver_sptr->compute(A.eigen_object());
|
|
|
|
if(m_solver_sptr->info() != Eigen::Success)
|
|
return false;
|
|
|
|
X = m_solver_sptr->solve(B);
|
|
|
|
return m_solver_sptr->info() == Eigen::Success;
|
|
}
|
|
|
|
bool pre_factor (const Matrix& A, NT& D)
|
|
{
|
|
D = 1;
|
|
|
|
m_mat = &A.eigen_object();
|
|
solver().compute(*m_mat);
|
|
return solver().info() == Eigen::Success;
|
|
}
|
|
|
|
bool linear_solver(const Vector& B, Vector& X)
|
|
{
|
|
CGAL_precondition(m_mat!=NULL); //pre_factor should have been called first
|
|
X = solver().solve(B);
|
|
return solver().info() == Eigen::Success;
|
|
}
|
|
protected:
|
|
const typename Matrix::EigenType* m_mat;
|
|
boost::shared_ptr<EigenSolverT> m_solver_sptr;
|
|
|
|
};
|
|
|
|
//specilization of the solver for BiCGSTAB as for surface parameterization, the
|
|
//intializer should be a vector of one's (this was the case in 3.1-alpha but not in the official 3.1).
|
|
template<>
|
|
class Eigen_solver_traits< Eigen::BiCGSTAB<Eigen_sparse_matrix<double>::EigenType> >
|
|
{
|
|
typedef Eigen::BiCGSTAB<Eigen_sparse_matrix<double>::EigenType> EigenSolverT;
|
|
typedef EigenSolverT::Scalar Scalar;
|
|
// Public types
|
|
public:
|
|
typedef Scalar NT;
|
|
typedef internal::Get_eigen_matrix<EigenSolverT,NT>::type Matrix;
|
|
typedef Eigen_vector<Scalar> Vector;
|
|
|
|
|
|
// Public operations
|
|
public:
|
|
|
|
Eigen_solver_traits(): m_solver_sptr(new EigenSolverT)
|
|
{
|
|
}
|
|
|
|
EigenSolverT& solver() { return *m_solver_sptr; }
|
|
|
|
/// Solve the sparse linear system "A*X = B".
|
|
/// Return true on success. The solution is then (1/D) * X.
|
|
///
|
|
/// @commentheading Preconditions:
|
|
/// - A.row_dimension() == B.dimension().
|
|
/// - A.column_dimension() == X.dimension().
|
|
bool linear_solver(const Matrix& A, const Vector& B, Vector& X, NT& D)
|
|
{
|
|
D = 1; // Eigen does not support homogeneous coordinates
|
|
|
|
m_solver_sptr->compute(A.eigen_object());
|
|
|
|
if(m_solver_sptr->info() != Eigen::Success)
|
|
return false;
|
|
|
|
X.setOnes(B.rows());
|
|
X = m_solver_sptr->solveWithGuess(B,X);
|
|
|
|
return m_solver_sptr->info() == Eigen::Success;
|
|
}
|
|
protected:
|
|
boost::shared_ptr<EigenSolverT> m_solver_sptr;
|
|
|
|
};
|
|
|
|
} //namespace CGAL
|
|
|
|
#endif // CGAL_EIGEN_SOLVER_TRAITS_H
|