cgal/Kernel_23/doc_tex/Kernel_23_ref/Simple_homogeneous.tex

35 lines
1.4 KiB
TeX

\begin{ccRefClass}{Simple_homogeneous<RingNumberType>}
\ccInclude{CGAL/Simple_homogeneous.h}
\ccDefinition
A model for a \ccc{Kernel} using homogeneous coordinates to represent the
geometric objects. In order for \ccRefName\ to model Euclidean geometry
in $E^2$ and/or $E^3$, for some mathematical ring $E$ (\textit{e.g.},
the integers \Z\ or the rationals \Q), the template parameter \ccc{RingNumberType}
must model the mathematical ring $E$. That is, the ring operations on this
number type must compute the mathematically correct results. If the number
type provided as a model for \ccc{RingNumberType} is only an approximation of a
ring (such as the built-in type \ccc{double}), then the geometry provided by
the kernel is only an approximation of Euclidean geometry.
\ccIsModel
\ccRefConceptPage{Kernel}
\ccTexHtml{\ccSetThreeColumns{typedef Quotient<RingNumberType>}{}{\hspace*{8.5cm}}}{}
\ccTypes
\ccTypedef{typedef Quotient<RingNumberType> FT;}{}
\ccGlue
\ccTypedef{typedef RingNumberType RT;}{}
\ccImplementation In contrast to \ccc{Homogeneous}, no reference counting
is used internally. This eases debugging, but may slow down algorithms
that copy objects intensively, or slightly speed up others.
\ccSeeAlso
\ccRefIdfierPage{CGAL::Cartesian<FieldNumberType>} \\
\ccRefIdfierPage{CGAL::Homogeneous<RingNumberType>} \\
\ccRefIdfierPage{CGAL::Simple_cartesian<FieldNumberType>} \\
\end{ccRefClass}