cgal/Kernel_23/doc_tex/Kernel_23_ref/circumcenter.tex

57 lines
2.0 KiB
TeX

\begin{ccRefFunction}{circumcenter}
\ccFunction{Point_2<Kernel>
circumcenter( const Point_2<Kernel>& p,
const Point_2<Kernel>& q);}
{compute the center of the smallest circle passing through the points $p$ and
$q$. Note: this is the same as \ccc{CGAL::midpoint(p, q)} but is provided
for homogeneity. }
\ccFunction{Point_2<Kernel>
circumcenter( const Point_2<Kernel>& p,
const Point_2<Kernel>& q,
const Point_2<Kernel>& r);}
{compute the center of the circle passing through the points $p$, $q$, and $r$.
\ccPrecond $p$, $q$, and $r$ are not collinear.}
\ccFunction{Point_2<Kernel>
circumcenter( const Triangle_2<Kernel>& t);}
{compute the center of the circle passing through the vertices of $t$.
\ccPrecond $t$ is not degenerate.}
\ccFunction{Point_3<Kernel>
circumcenter( const Point_3<Kernel>& p,
const Point_3<Kernel>& q);}
{compute the center of the smallest sphere passing through the points $p$ and
$q$. Note: this is the same as \ccc{CGAL::midpoint(p, q)} but is provided
for homogeneity. }
\ccFunction{Point_3<Kernel>
circumcenter( const Point_3<Kernel>& p,
const Point_3<Kernel>& q,
const Point_3<Kernel>& r);}
{compute the center of the circle passing through the points $p$, $q$, and $r$.
\ccPrecond $p$, $q$, and $r$ are not collinear.}
\ccFunction{Point_3<Kernel>
circumcenter( const Triangle_3<Kernel>& t);}
{compute the center of the circle passing through the vertices of $t$.
\ccPrecond $t$ is not degenerate.}
\ccFunction{Point_3<Kernel>
circumcenter( const Point_3<Kernel>& p,
const Point_3<Kernel>& q,
const Point_3<Kernel>& r,
const Point_3<Kernel>& s);}
{compute the center of the sphere passing through the points $p$, $q$, $r$, and $s$.
\ccPrecond $p$, $q$, $r$, and $s$ are not coplanar.}
\ccFunction{Point_3<Kernel>
circumcenter( const Tetrahedron_3<Kernel>& t);}
{compute the center of the sphere passing through the vertices of $t$.
\ccPrecond $t$ is not degenerate.}
\end{ccRefFunction}