cgal/Old_Packages/S3/include/CGAL/SimpleCartesian/Iso_cuboidS3.h

261 lines
6.4 KiB
C++

// ======================================================================
//
// Copyright (c) 1999 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------
// release :
// release_date : 2000, October 15
//
// source : webS3/S3.lw
// file : include/CGAL/SimpleCartesian/Iso_cuboidS3.h
// package : S3 (1.7)
// maintainer : Stefan Schirra <stschirr@mpi-sb.mpg.de>
// revision : 1.7
// revision_date : 15 Oct 2000
// author(s) : Stefan Schirra <Stefan.Schirra@@mpi-sb.mpg.de>
// based on code by
// Andreas Fabri and
// Herve Brönnimann
//
// coordinator : MPI, Saarbrücken
// ======================================================================
#ifndef CGAL_ISO_CUBOIDS3_H
#define CGAL_ISO_CUBOIDS3_H
#include <CGAL/Bbox_3.h>
#include <CGAL/predicates_on_points_3.h>
CGAL_BEGIN_NAMESPACE
template < class FT >
class Iso_cuboidS3
{
public:
Iso_cuboidS3() {}
Iso_cuboidS3(const PointS3<FT>& p, const PointS3<FT>& q);
bool operator==(const Iso_cuboidS3<FT>& s) const;
bool operator!=(const Iso_cuboidS3<FT>& s) const;
const PointS3<FT>& min() const { return e0; }
const PointS3<FT>& max() const { return e1; }
PointS3<FT> vertex(int i) const;
PointS3<FT> operator[](int i) const { return vertex(i); }
Iso_cuboidS3<FT> transform(const Aff_transformationS3<FT>& t) const;
Bounded_side bounded_side(const PointS3<FT>& p) const;
bool has_on(const PointS3<FT>& p) const;
bool has_on_boundary(const PointS3<FT>& p) const;
bool has_on_bounded_side(const PointS3<FT>& p) const;
bool has_on_unbounded_side(const PointS3<FT>& p) const;
bool is_degenerate() const;
Bbox_3 bbox() const;
const FT& xmin() const;
const FT& ymin() const;
const FT& zmin() const;
const FT& xmax() const;
const FT& ymax() const;
const FT& zmax() const;
protected:
PointS3<FT> e0;
PointS3<FT> e1;
};
template < class FT >
CGAL_KERNEL_CTOR_LARGE_INLINE
Iso_cuboidS3<FT>::Iso_cuboidS3(const PointS3<FT>& p, const PointS3<FT>& q)
{
FT minx, maxx, miny, maxy, minz, maxz;
if (p.x() < q.x())
{ minx = p.x(); maxx = q.x(); }
else
{ minx = q.x(); maxx = p.x(); }
if (p.y() < q.y())
{ miny = p.y(); maxy = q.y(); }
else
{ miny = q.y(); maxy = p.y(); }
if (p.z() < q.z())
{ minz = p.z(); maxz = q.z(); }
else
{ minz = q.z(); maxz = p.z(); }
e0 = PointS3<FT>(minx, miny, minz);
e1 = PointS3<FT>(maxx, maxy, maxz);
}
template < class FT >
CGAL_KERNEL_INLINE
bool
Iso_cuboidS3<FT>::operator==(const Iso_cuboidS3<FT>& r) const
{ return (min() == r.min()) && (max() == r.max()); }
template < class FT >
inline
bool
Iso_cuboidS3<FT>::operator!=(const Iso_cuboidS3<FT>& r) const
{ return !(*this == r); }
template < class FT >
inline
const FT&
Iso_cuboidS3<FT>::xmin() const
{ return min().x(); }
template < class FT >
inline
const FT&
Iso_cuboidS3<FT>::ymin() const
{ return min().y(); }
template < class FT >
inline
const FT&
Iso_cuboidS3<FT>::zmin() const
{ return min().z(); }
template < class FT >
inline
const FT&
Iso_cuboidS3<FT>::xmax() const
{ return max().x(); }
template < class FT >
inline
const FT&
Iso_cuboidS3<FT>::ymax() const
{ return max().y(); }
template < class FT >
inline
const FT&
Iso_cuboidS3<FT>::zmax() const
{ return max().z(); }
template < class FT >
CGAL_KERNEL_LARGE_INLINE
PointS3<FT>
Iso_cuboidS3<FT>::vertex(int i) const
{
switch (i%8)
{
case 0: return min();
case 1: return PointS3<FT>(e1.x(), e0.y(), e0.z());
case 2: return PointS3<FT>(e1.x(), e1.y(), e0.z());
case 3: return PointS3<FT>(e0.x(), e1.y(), e0.z());
case 4: return PointS3<FT>(e0.x(), e1.y(), e1.z());
case 5: return PointS3<FT>(e0.x(), e0.y(), e1.z());
case 6: return PointS3<FT>(e1.x(), e0.y(), e1.z());
case 7: return max();
}
return PointS3<FT>();
}
template < class FT >
CGAL_KERNEL_MEDIUM_INLINE
Bounded_side
Iso_cuboidS3<FT>::bounded_side(const PointS3<FT>& p) const
{
if ( ( p.x() < e0.x() )
||( e1.x() < p.x() )
||( p.y() < e0.y() )
||( e1.y() < p.y() )
||( p.z() < e0.z() )
||( e1.z() < p.z() ) )
{ return ON_UNBOUNDED_SIDE; }
if ( ( p.x() == e0.x() )
||( e1.x() == p.x() )
||( p.y() == e0.y() )
||( e1.y() == p.y() )
||( p.z() == e0.z() )
||( e1.z() == p.z() ) )
{ return ON_BOUNDARY; }
else
{ return ON_BOUNDED_SIDE; }
}
template < class FT >
inline
bool
Iso_cuboidS3<FT>::has_on_boundary(const PointS3<FT>& p) const
{ return ( bounded_side(p) == ON_BOUNDARY ); }
template < class FT >
inline
bool
Iso_cuboidS3<FT>::has_on(const PointS3<FT>& p) const
{ return ( bounded_side(p) == ON_BOUNDARY ); }
template < class FT >
inline
bool
Iso_cuboidS3<FT>::has_on_bounded_side(const PointS3<FT>& p) const
{ return ( bounded_side(p) == ON_BOUNDED_SIDE ); }
template < class FT >
CGAL_KERNEL_INLINE
bool
Iso_cuboidS3<FT>::has_on_unbounded_side(const PointS3<FT>& p) const
{ return ( bounded_side(p) == ON_UNBOUNDED_SIDE ); }
template < class FT >
CGAL_KERNEL_INLINE
bool
Iso_cuboidS3<FT>::is_degenerate() const
{
return ( (e0.x() == e1.x())||(e0.y() == e1.y())||(e0.z() == e1.z()) );
}
template < class FT >
inline
Bbox_3
Iso_cuboidS3<FT>::bbox() const
{ return min().bbox() + max().bbox(); }
template < class FT >
CGAL_KERNEL_INLINE
Iso_cuboidS3<FT>
Iso_cuboidS3<FT>::transform(const Aff_transformationS3<FT>&t) const
{ return Iso_cuboidS3<FT>(t.transform(e0), t.transform(e1) ); }
#ifndef CGAL_NO_OSTREAM_INSERT_ISO_CUBOIDS3
template < class FT >
std::ostream&
operator<<(std::ostream& os, const Iso_cuboidS3<FT>& r)
{
switch(os.iword(IO::mode))
{
case IO::ASCII :
return os << min() << ' ' << max();
case IO::BINARY :
return os << min() << max();
default:
return os << "Iso_cuboidS3(" << min() << ", " << max() << ")";
}
}
#endif // CGAL_NO_OSTREAM_INSERT_ISO_CUBOIDS3
#ifndef CGAL_NO_ISTREAM_EXTRACT_ISO_CUBOIDS3
template < class FT >
std::istream&
operator>>(std::istream& is, Iso_cuboidS3<FT>& r)
{
PointS3<FT> p, q;
is >> p >> q;
r = Iso_cuboidS3<FT>(p, q);
return is;
}
#endif // CGAL_NO_ISTREAM_EXTRACT_ISO_CUBOIDS3
CGAL_END_NAMESPACE
#endif // CGAL_ISO_CUBOIDS3_H