cgal/Interpolation/include/CGAL/natural_neighbor_coordinate...

372 lines
14 KiB
C++

// Copyright (c) 2005 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Raphaelle Chaine
#ifndef CGAL_NATURAL_NEIGHBORS_3_H
#define CGAL_NATURAL_NEIGHBORS_3_H
#include <CGAL/license/Interpolation.h>
#include <CGAL/tags.h>
#include <CGAL/iterator.h>
#include <CGAL/utility.h>
#include <CGAL/assertions.h>
#include <CGAL/number_utils.h>
#include <algorithm>
#include <iostream> //TO DO : to remove
#include <map>
#include <set>
#include <utility>
#include <vector>
namespace CGAL {
// ====================== Geometric Traits utilities =========================================
// === Declarations
template <class Gt>
typename Gt::FT
signed_area(const typename Gt::Point_3& p, const typename Gt::Point_3& q,
const typename Gt::Point_3& r, const typename Gt::Point_3& point_of_view,
const Gt& gt = Gt());
// ====================== Delaunay Triangulation utilities ==========================
// === Declarations
template < class DT>
typename DT::Geom_traits::Point_3
construct_circumcenter(const typename DT::Facet& f,
const typename DT::Geom_traits::Point_3& Q,
const typename DT::Geom_traits& gt = typename DT::Geom_traits());
// ====================== Natural Neighbors Queries ==========================
// === Definitions
// Given a 3D point Q and a 3D Delaunay triangulation dt,
// the next two functions calculate the natural neighbors and coordinates of Q with regard of dt
//
// OutputIterator has value type
// std::pair<Dt::Vertex_handle, Dt::Geom_traits::FT>
// Result :
// - An OutputIterator providing natural neighbors P_i of Q with unnormalized coordinates a_i associated to them
// - The normalizing coefficient (sum over i of the a_i)
// - A boolean specifying whether the calculation has succeeded or not
template <class Dt, class OutputIterator>
Triple< OutputIterator, // iterator with value type std::pair<Dt::Vertex_handle, Dt::Geom_traits::FT>
typename Dt::Geom_traits::FT, // Should provide 0 and 1
bool >
laplace_natural_neighbor_coordinates_3(const Dt& dt,
const typename Dt::Geom_traits::Point_3& Q,
OutputIterator nn_out,
typename Dt::Geom_traits::FT& norm_coeff,
const typename Dt::Cell_handle start = CGAL_TYPENAME_DEFAULT_ARG Dt::Cell_handle())
{
typedef typename Dt::Geom_traits Gt;
typedef typename Gt::Point_3 Point;
typedef typename Dt::Cell_handle Cell_handle;
typedef typename Dt::Vertex_handle Vertex_handle;
typedef typename Dt::Facet Facet;
typedef typename Dt::Locate_type Locate_type;
typedef typename Gt::FT Coord_type;
CGAL_precondition (dt.dimension() == 3);
Locate_type lt;
int li, lj;
Cell_handle c = dt.locate( Q, lt, li, lj, start);
if ( lt == Dt::VERTEX )
{
*nn_out++= std::make_pair(c->vertex(li), Coord_type(1));
return make_triple(nn_out, norm_coeff = Coord_type(1),true);
}
else if (dt.is_infinite(c))
{
//point outside the convex-hull
return make_triple(nn_out, Coord_type(1), false);
}
std::set<Cell_handle> cells;
// To replace the forbidden access to the "in conflict" flag :
// std::find operations on this set
std::vector<Facet> bound_facets;
bound_facets.reserve(32);
// Find the cells in conflict with Q
dt.find_conflicts(Q, c,
std::back_inserter(bound_facets),
std::inserter(cells, cells.begin()));
std::map<Vertex_handle,Coord_type> coordinate;
typename std::map<Vertex_handle,Coord_type>::iterator coor_it;
typename std::vector<Facet>::iterator bound_it;
for (bound_it = bound_facets.begin(); bound_it != bound_facets.end(); ++bound_it)
{
//for each facet on the boundary
Facet f1 = *bound_it;
Cell_handle cc1 = f1.first;
if (dt.is_infinite(cc1))
return make_triple(nn_out, norm_coeff=Coord_type(1), false);//point outside the convex-hull
CGAL_assertion_code(Cell_handle cc2 = cc1->neighbor(f1.second);)
CGAL_assertion(std::find(cells.begin(),cells.end(),cc1) != cells.end());//TODO : Delete
CGAL_assertion(std::find(cells.begin(),cells.end(),cc2) == cells.end());//TODO : Delete
Point C_1 = construct_circumcenter<Dt>(f1, Q, dt.geom_traits());
for(int j=1; j<4; j++)
{
//for each vertex P of the boundary facet
Vertex_handle vP = cc1->vertex((f1.second+j)&3);
Vertex_handle vR = cc1->vertex(dt.next_around_edge(f1.second,(f1.second+j)&3));
// turn around the oriented edge vR vP
Cell_handle cc3 = cc1;
int num_next = dt.next_around_edge((f1.second+j)&3,f1.second);
Cell_handle next = cc3->neighbor(num_next);
while (std::find(cells.begin(),cells.end(),next) != cells.end())
{
CGAL_assertion( next != cc1 );
cc3 = next;
num_next = dt.next_around_edge(cc3->index(vR),cc3->index(vP));
next = cc3->neighbor(num_next);
}
Point C_3 = construct_circumcenter<Dt>(Facet(cc3,num_next), Q, dt.geom_traits());
Point midPQ = midpoint(vP->point(),Q);
Coord_type coor_add = signed_area<Gt>(C_3,C_1,midPQ, vP->point(), dt.geom_traits());
((coor_it = coordinate.find(vP)) == coordinate.end())?
coordinate[vP] = coor_add : coor_it->second += coor_add; // Replace by a function call
}
} //end : for each facet on the boundary
norm_coeff = 0;
for (coor_it=coordinate.begin(); coor_it!=coordinate.end(); ++coor_it)
{
Coord_type co = coor_it->second /
(CGAL_NTS sqrt(dt.geom_traits().compute_squared_distance_3_object()(
coor_it->first->point(),Q)));
*nn_out++ = std::make_pair(coor_it->first,co);
norm_coeff += co;
}
return make_triple(nn_out, norm_coeff, true);
}
template <class Dt, class OutputIterator>
Triple< OutputIterator, // iterator with value type std::pair<Dt::Vertex_handle, Dt::Geom_traits::FT>
typename Dt::Geom_traits::FT, // Should provide 0 and 1
bool >
sibson_natural_neighbor_coordinates_3(const Dt& dt,
const typename Dt::Geom_traits::Point_3& Q,
OutputIterator nn_out,
typename Dt::Geom_traits::FT& norm_coeff,
const typename Dt::Cell_handle start = CGAL_TYPENAME_DEFAULT_ARG Dt::Cell_handle())
{
typedef typename Dt::Geom_traits Gt;
typedef typename Gt::Point_3 Point;
typedef typename Dt::Cell_handle Cell_handle;
typedef typename Dt::Vertex_handle Vertex_handle;
typedef typename Dt::Facet Facet;
typedef typename Dt::Locate_type Locate_type;
typedef typename Gt::FT Coord_type;
CGAL_precondition (dt.dimension()== 3);
Locate_type lt;
int li, lj;
Cell_handle c = dt.locate( Q, lt, li, lj, start);
if ( lt == Dt::VERTEX )
{
*nn_out++ = std::make_pair(c->vertex(li),Coord_type(1));
return make_triple(nn_out,norm_coeff=Coord_type(1),true);
}
else if (dt.is_infinite(c))
{
//point outside the convex-hull
return make_triple(nn_out, Coord_type(1), false);
}
std::set<Cell_handle> cells;
typename std::set<Cell_handle>::iterator cit;
// To replace the forbidden access to the "in conflict" flag :
// std::find operations on this set
// Find the cells in conflict with Q
dt.find_conflicts(Q, c,
Emptyset_iterator(),
std::inserter(cells,cells.begin()));
std::map<Vertex_handle,Coord_type> coordinate;
typename std::map<Vertex_handle,Coord_type>::iterator coor_it;
for (cit = cells.begin(); cit != cells.end(); ++cit)
{
// for each cell cc1 in conflict
Cell_handle cc1 = *cit;
CGAL_assertion(std::find(cells.begin(),cells.end(),cc1)!=cells.end());//TODO : Delete
if (dt.is_infinite(cc1))
return make_triple(nn_out,norm_coeff=Coord_type(1), false);//point outside the convex-hull
typename Dt::Geom_traits::Compute_volume_3 vol =
dt.geom_traits().compute_volume_3_object();
Point C1 = dt.dual(cc1);
for(int i=0; i<4; i++)
{
//for each neighboring cell cc2 of cc1
Cell_handle cc2 = cc1->neighbor(i);
if(std::find(cells.begin(),cells.end(),cc2) == cells.end())
{
// cc2 outside the conflict cavity
Point C_1 = construct_circumcenter<Dt>(Facet(cc1,i), Q, dt.geom_traits());
for(int j=1; j<4; j++)
{
//for each vertex P of the boundary facet
Vertex_handle vP = cc1->vertex((i+j)&3);//&3 in place of %4
Vertex_handle vR = cc1->vertex(dt.next_around_edge(i,(i+j)&3));
// turn around the oriented edge vR vP
Cell_handle cc3 = cc1;
int num_next = dt.next_around_edge((i+j)&3,i);
Cell_handle next = cc3->neighbor(num_next);
while (std::find(cells.begin(),cells.end(),next) != cells.end())
{ //next is in conflict
CGAL_assertion( next != cc1 );
cc3 = next;
num_next = dt.next_around_edge(cc3->index(vR),cc3->index(vP));
next = cc3->neighbor(num_next);
}
if (dt.is_infinite(cc3))
{
//point outside the convex-hull
return make_triple(nn_out,norm_coeff = Coord_type(1), false);
}
Point C3 = dt.dual(cc3);
Point C_3 = construct_circumcenter<Dt>(Facet(cc3,num_next), Q, dt.geom_traits());
Point midPQ = midpoint(vP->point(),Q);
Point midPR = midpoint(vP->point(),vR->point());
Coord_type coor_add = vol(C_1,C1,midPR,midPQ);
coor_add -= vol(C_1,C_3,midPR,midPQ);
coor_add += vol(C3,C_3,midPR,midPQ);
((coor_it = coordinate.find(vP)) == coordinate.end())?
coordinate[vP] = coor_add : coor_it->second += coor_add;// Replace by a function call
}
}
else // cc2 in the conflict cavity
{
CGAL_assertion(std::find(cells.begin(),cells.end(),cc2)!=cells.end());//TODO : Delete
if (dt.is_infinite(cc2))
{
//point outside the convex-hull
return make_triple(nn_out,norm_coeff = Coord_type(1), false);
}
Point C2 = dt.dual(cc2);
for(int j=1;j<4;j++)
{
//for each vertex P of the internal facet
Vertex_handle vP=cc1->vertex((i+j)&3);
Vertex_handle vR=cc1->vertex(dt.next_around_edge(i,(i+j)&3));
Point midPQ = midpoint(vP->point(),Q);
Point midPR = midpoint(vP->point(),vR->point());
Coord_type coor_add = vol(C2,C1,midPR,midPQ);
((coor_it=coordinate.find(vP))==coordinate.end())?
coordinate[vP]=coor_add : coor_it->second+=coor_add;// Replace by a function call
}
}
}
}
norm_coeff=0;
for (coor_it=coordinate.begin(); coor_it!=coordinate.end(); ++coor_it)
{
*nn_out++ = std::make_pair(coor_it->first,coor_it->second);
norm_coeff += coor_it->second;
}
return make_triple(nn_out,norm_coeff,true);
}
template <typename Dt, typename InputIterator>
bool is_correct_natural_neighborhood(const Dt& /*dt*/,
const typename Dt::Geom_traits::Point_3& Q,
InputIterator it_begin, InputIterator it_end,
const typename Dt::Geom_traits::FT& norm_coeff)
{
typedef typename Dt::Geom_traits Gt;
typedef typename Gt::FT Coord_type;
Coord_type sum_x(0);
Coord_type sum_y(0);
Coord_type sum_z(0);
InputIterator it;
for(it = it_begin ; it != it_end ; ++it)
{
sum_x += it->second*(it->first->point().x());
sum_y += it->second*(it->first->point().y());
sum_z += it->second*(it->first->point().z());
}
//!!!! to be replaced by a linear combination of points as soon
// as it is available in the kernel.
std::cout << sum_x/norm_coeff << " "
<< sum_y/norm_coeff << " "
<< sum_z/norm_coeff << std::endl;
return ((sum_x == norm_coeff*Q.x()) && (sum_y == norm_coeff*Q.y())
&& (sum_z == norm_coeff*Q.z()));
}
// ====================== Geometric Traits utilities =========================================
// === Definitions
template <class Gt>
typename Gt::FT
signed_area(const typename Gt::Point_3& p, const typename Gt::Point_3& q,
const typename Gt::Point_3& r,
const typename Gt::Point_3& point_of_view,
const Gt& gt /* = Gt() */)
{
// signed area of the triangle p q r
return gt.compute_area_3_object()(p,q,r)
* (gt.orientation_3_object()(p, q, r, point_of_view) == COUNTERCLOCKWISE?+1:-1);
}
// ====================== Delaunay Triangulation utilities ==========================
// === Definitions
template < class DT>
typename DT::Geom_traits::Point_3
construct_circumcenter(const typename DT::Facet& f,
const typename DT::Geom_traits::Point_3& Q,
const typename DT::Geom_traits& gt /* = typename DT::Geom_traits() */ )
{
CGAL_precondition(//&3 in place of %4
!gt.coplanar_3_object()(
f.first->vertex((f.second+1)&3)->point(),
f.first->vertex((f.second+2)&3)->point(),
f.first->vertex((f.second+3)&3)->point(),
Q));
// else the facet is not on the envelope of the conflict cavity associated to P
return gt.construct_circumcenter_3_object()(
f.first->vertex((f.second+1)&3)->point(),
f.first->vertex((f.second+2)&3)->point(),
f.first->vertex((f.second+3)&3)->point(),
Q);
}
} //namespace CGAL
#endif // CGAL_NATURAL_NEIGHBORS_3_H