mirror of https://github.com/CGAL/cgal
57 lines
1.8 KiB
TeX
57 lines
1.8 KiB
TeX
\begin{ccRefConcept}{PolynomialTraits_d::SquareFreeFactorize}
|
|
|
|
\ccDefinition
|
|
|
|
This \ccc{Functor} computes a square-free factorization
|
|
of a \ccc{PolynomialTraits_d::Polynomial_d}.
|
|
|
|
A polynomial $p$ is factored into square-free and pairwise coprime non-constant
|
|
factors $g_i$ with multiplicities $m_i$ and a constant factor $a$, such that
|
|
$p = a \cdot g_1^{m_1} \cdot ... \cdot g_n^{m_n}$.
|
|
|
|
The pairs $(g_i,m_i)$ are written into the given output iterator.\\
|
|
|
|
This functor is well defined if \ccc{PolynomialTraits_d::Polynomial_d} is a
|
|
\ccc{UniqueFactorizationDomain}.
|
|
|
|
\ccRefines
|
|
|
|
Assignable\\
|
|
CopyConstructible\\
|
|
DefaultConstructible\\
|
|
|
|
%\ccTypes
|
|
|
|
\ccOperations
|
|
|
|
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
|
|
\ccCreationVariable{fo}
|
|
|
|
\ccMethod{template<class OutputIterator>
|
|
OutputIterator operator()(PolynomialTraits_d::Polynomial_d p,
|
|
OutputIterator it,
|
|
PolynomialTraits_d::Innermost_coefficient_type& a);}
|
|
{ Computes the square-free factorization of $p$ and returns the
|
|
past-the-end iterator of the written range.
|
|
\ccPrecond{ \ccc{std::iterator_traits< OutputIterator >::value_type}
|
|
must be constructible from
|
|
\ccc{std::pair<PolynomialTraits_d::Polynomial_d,int>}.}
|
|
}
|
|
|
|
\ccMethod{template<class OutputIterator>
|
|
OutputIterator operator()(PolynomialTraits_d::Polynomial_d p,
|
|
OutputIterator it);}
|
|
{ As the first operator, just not computing the factor $a$. }
|
|
|
|
%\ccHasModels
|
|
|
|
\ccSeeAlso
|
|
|
|
\ccRefIdfierPage{Polynomial_d}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d::SquareFreeFactorizeUpToConstantFactor}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d::MakeSquareFree}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d::IsSquareFree}\\
|
|
|
|
\end{ccRefConcept}
|