cgal/Surface_modeling/include/CGAL/Deform_mesh.h

185 lines
4.8 KiB
C++

#ifndef CGAL_DEFORM_MESH_H
#define CGAL_DEFORM_MESH_H
#include <CGAL/trace.h>
#include <CGAL/Timer.h>
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/IO/Polyhedron_iostream.h>
#include <CGAL/Taucs_solver_traits.h>
typedef CGAL::Simple_cartesian<double> Kernel;
typedef Kernel::Vector_3 Vector;
typedef Kernel::Point_3 Point;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;
typedef Polyhedron::Vertex_const_handle Vertex_handle;
typedef Polyhedron::Vertex_iterator Vertex_iterator;
typedef Polyhedron::Halfedge_around_vertex_const_circulator HV_circulator;
namespace CGAL {
class Deform_mesh
{
private:
Polyhedron polyhedron; // target mesh
std::map<Vertex_handle, Vertex_handle> s2t; // access from source mesh to target mesh
std::vector<Vertex_handle> roi;
std::vector<Vertex_handle> hdl; // user specified handles, storing the target positions
Taucs_solver_traits<double> solver;
public:
// The constructor gets the Polyhedron that we will model
Deform_mesh(Polyhedron &P)
:polyhedron(P)
{
Vertex_iterator vit_t = polyhedron.vertices_begin();
for (Vertex_iterator vit_s = P.vertices_begin(); vit_s != P.vertices_end(); vit_s++)
{
s2t[vit_s] =vit_t;
}
}
// Release resources
~Deform_mesh(void)
{
}
// The region of interest and the handles are a set of vertices
void region_of_interest(Vertex_iterator begin, Vertex_iterator end, size_t k)
{
roi.clear();
for (Vertex_iterator vit = begin; vit != end; vit ++)
{
Vertex_handle handle = s2t[vit];
roi.push_back(handle);
}
roi.push_back(s2t[end]);
int idx_lv = 0; // pointing the neighboring vertices on current level
int idx_lv_end;
for (size_t lv = 0; lv < k; lv++)
{
idx_lv_end = roi.size();
for ( ;idx_lv < idx_lv_end; idx_lv++ )
{
Vertex_handle vh = roi[idx_lv];
HV_circulator wc = vh->vertex_begin(), done(wc);
do {
Vertex_handle wh = wc->opposite()->vertex();
std::vector<Vertex_handle> ::iterator result = find(roi.begin(), roi.end(), wh);
if (result == roi.end())
{
roi.push_back(wh);
}
++wc;
}while(wc != done);
}
}
}
void handles(Vertex_iterator begin, Vertex_iterator end)
{
hdl.clear();
for (Vertex_iterator vit = begin; vit != end; vit ++)
{
Vertex_handle handle = s2t[vit];
hdl.push_back(handle);
}
hdl.push_back(s2t[end]);
}
// Before we can model we have to do some precomputation
void preprocess()
{
CGAL_TRACE_STREAM << "Calls preprocess()\n";
Timer task_timer; task_timer.start();
// get #variables
unsigned int nb_variables = polyhedron.size_of_vertices();
CGAL_TRACE_STREAM << " Creates matrix...\n";
// Assemble linear system A*X=B
Taucs_solver_traits<double>::Matrix A(nb_variables); // matrix is symmetric definite positive
Taucs_solver_traits<double>::Vector X(nb_variables), B(nb_variables);
assemble_laplacian(A, "uni");
CGAL_TRACE_STREAM << " Creates matrix: done (" << task_timer.time() << " s)\n";
CGAL_TRACE_STREAM << " Pre-factorizing linear system...\n";
// Pre-factorizing the linear system A*X=B
task_timer.reset();
double D;
if(!solver.pre_factor(A, D))
return;
CGAL_TRACE_STREAM << " Pre-factorizing linear system: done (" << task_timer.time() << " s)\n";
}
// Assemble Laplacian matrix A of linear system A*X=B
void assemble_laplacian(Taucs_solver_traits<double>::Matrix& A, std::string type)
{
std::map<Vertex_handle, int> idx;
int index = 0;
for (Vertex_iterator vit = polyhedron.vertices_begin(); vit != polyhedron.vertices_end(); vit++)
{
idx[vit] = index;
index++;
}
for (Vertex_iterator vit = polyhedron.vertices_begin(); vit != polyhedron.vertices_end(); vit++)
{
Vertex_handle vi = vit;
double diagonal = 0;
int idx_i = idx[vi];
HV_circulator wc = vi->vertex_begin(), done(wc);
do {
Vertex_handle vj = wc->opposite()->vertex();
double wij = 1;
if (type == "cot") // cotangent Laplacian weights
{
;
}
int idx_j = idx[vj];
A.set_coef(idx_i, idx_j, -wij, true); // off-diagonal coefficient
diagonal += wij;
++wc;
}while(wc != done);
// diagonal coefficient
A.set_coef(idx_i, idx_i, diagonal, true);
}
// handle constraints
for (int i = 0; i < hdl.size(); i++)
{
int idx_i = idx[hdl[i]];
A.set_coef(idx_i, idx_i, 1.0);
}
}
// The operator will be called in a real time loop from the GUI.
void operator()(Vertex_iterator vit, Vector v)
{
Point p = s2t[vit]->point();
p = p-v;
}
};
} //namespace CGAL
#endif // CGAL_DEFORM_MESH_H