mirror of https://github.com/CGAL/cgal
1816 lines
52 KiB
C++
1816 lines
52 KiB
C++
// Copyright (c) 1999-2004 INRIA Sophia-Antipolis (France).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org); you may redistribute it under
|
|
// the terms of the Q Public License version 1.0.
|
|
// See the file LICENSE.QPL distributed with CGAL.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
//
|
|
//
|
|
// Author(s) : Monique Teillaud <Monique.Teillaud@sophia.inria.fr>
|
|
// Sylvain Pion <Sylvain.Pion@sophia.inria.fr>
|
|
// Andreas Fabri <Andreas.Fabri@sophia.inria.fr>
|
|
|
|
|
|
#ifndef CGAL_DELAUNAY_TRIANGULATION_3_H
|
|
#define CGAL_DELAUNAY_TRIANGULATION_3_H
|
|
|
|
#include <CGAL/basic.h>
|
|
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include <CGAL/Triangulation_short_names_3.h>
|
|
#include <CGAL/Triangulation_3.h>
|
|
#include <CGAL/Delaunay_remove_tds_3.h>
|
|
#include <CGAL/Unique_hash_map.h>
|
|
#include <CGAL/iterator.h>
|
|
|
|
CGAL_BEGIN_NAMESPACE
|
|
|
|
template < class Tr > class Natural_neighbors_3;
|
|
|
|
template < class Gt,
|
|
class Tds = Triangulation_data_structure_3 <
|
|
Triangulation_vertex_base_3<Gt>,
|
|
Triangulation_cell_base_3<Gt> > >
|
|
class Delaunay_triangulation_3 : public Triangulation_3<Gt,Tds>
|
|
{
|
|
typedef Delaunay_triangulation_3<Gt, Tds> Self;
|
|
typedef Triangulation_3<Gt,Tds> Tr_Base;
|
|
|
|
friend class Natural_neighbors_3<Self>;
|
|
|
|
public:
|
|
typedef Tds Triangulation_data_structure;
|
|
typedef Gt Geom_traits;
|
|
|
|
typedef typename Gt::Point_3 Point;
|
|
typedef typename Gt::Segment_3 Segment;
|
|
typedef typename Gt::Triangle_3 Triangle;
|
|
typedef typename Gt::Tetrahedron_3 Tetrahedron;
|
|
|
|
// types for dual:
|
|
typedef typename Gt::Line_3 Line;
|
|
typedef typename Gt::Ray_3 Ray;
|
|
//typedef typename Gt::Plane_3 Plane;
|
|
typedef typename Gt::Object_3 Object;
|
|
|
|
typedef typename Tr_Base::Cell_handle Cell_handle;
|
|
typedef typename Tr_Base::Vertex_handle Vertex_handle;
|
|
|
|
typedef typename Tr_Base::Cell Cell;
|
|
typedef typename Tr_Base::Vertex Vertex;
|
|
typedef typename Tr_Base::Facet Facet;
|
|
typedef typename Tr_Base::Edge Edge;
|
|
|
|
typedef typename Tr_Base::Cell_circulator Cell_circulator;
|
|
typedef typename Tr_Base::Facet_circulator Facet_circulator;
|
|
typedef typename Tr_Base::Cell_iterator Cell_iterator;
|
|
typedef typename Tr_Base::Facet_iterator Facet_iterator;
|
|
typedef typename Tr_Base::Edge_iterator Edge_iterator;
|
|
typedef typename Tr_Base::Vertex_iterator Vertex_iterator;
|
|
|
|
typedef typename Tr_Base::Finite_vertices_iterator Finite_vertices_iterator;
|
|
typedef typename Tr_Base::Finite_cells_iterator Finite_cells_iterator;
|
|
typedef typename Tr_Base::Finite_facets_iterator Finite_facets_iterator;
|
|
typedef typename Tr_Base::Finite_edges_iterator Finite_edges_iterator;
|
|
|
|
typedef typename Tr_Base::All_cells_iterator All_cells_iterator;
|
|
|
|
typedef typename Tr_Base::Locate_type Locate_type;
|
|
|
|
typedef Triple<Vertex_handle,Vertex_handle,Vertex_handle> Vertex_triple;
|
|
|
|
|
|
|
|
|
|
#ifndef CGAL_CFG_USING_BASE_MEMBER_BUG_2
|
|
using Tr_Base::cw;
|
|
using Tr_Base::ccw;
|
|
using Tr_Base::geom_traits;
|
|
using Tr_Base::number_of_vertices;
|
|
using Tr_Base::dimension;
|
|
using Tr_Base::finite_facets_begin;
|
|
using Tr_Base::finite_facets_end;
|
|
using Tr_Base::finite_vertices_begin;
|
|
using Tr_Base::finite_vertices_end;
|
|
using Tr_Base::finite_cells_begin;
|
|
using Tr_Base::finite_cells_end;
|
|
using Tr_Base::finite_edges_begin;
|
|
using Tr_Base::finite_edges_end;
|
|
using Tr_Base::tds;
|
|
using Tr_Base::infinite_vertex;
|
|
using Tr_Base::next_around_edge;
|
|
using Tr_Base::vertex_triple_index;
|
|
using Tr_Base::mirror_vertex;
|
|
using Tr_Base::coplanar;
|
|
using Tr_Base::coplanar_orientation;
|
|
using Tr_Base::orientation;
|
|
#endif
|
|
|
|
protected:
|
|
|
|
Oriented_side
|
|
side_of_oriented_sphere(const Point &p0, const Point &p1, const Point &p2,
|
|
const Point &p3, const Point &t, bool perturb = false) const;
|
|
|
|
Bounded_side
|
|
coplanar_side_of_bounded_circle(const Point &p, const Point &q,
|
|
const Point &r, const Point &s, bool perturb = false) const;
|
|
|
|
// for dual:
|
|
Point
|
|
construct_circumcenter(const Point &p, const Point &q, const Point &r) const
|
|
{
|
|
return geom_traits().construct_circumcenter_3_object()(p, q, r);
|
|
}
|
|
|
|
Line
|
|
construct_equidistant_line(const Point &p1, const Point &p2,
|
|
const Point &p3) const
|
|
{
|
|
return geom_traits().construct_equidistant_line_3_object()(p1, p2, p3);
|
|
}
|
|
|
|
Ray
|
|
construct_ray(const Point &p, const Line &l) const
|
|
{
|
|
return geom_traits().construct_ray_3_object()(p, l);
|
|
}
|
|
|
|
Object
|
|
construct_object(const Point &p) const
|
|
{
|
|
return geom_traits().construct_object_3_object()(p);
|
|
}
|
|
|
|
Object
|
|
construct_object(const Segment &s) const
|
|
{
|
|
return geom_traits().construct_object_3_object()(s);
|
|
}
|
|
|
|
Object
|
|
construct_object(const Ray &r) const
|
|
{
|
|
return geom_traits().construct_object_3_object()(r);
|
|
}
|
|
|
|
bool
|
|
less_distance(const Point &p, const Point &q, const Point &r) const
|
|
{
|
|
return geom_traits().compare_distance_3_object()(p, q, r) == SMALLER;
|
|
}
|
|
|
|
public:
|
|
|
|
Delaunay_triangulation_3(const Gt& gt = Gt())
|
|
: Tr_Base(gt)
|
|
{}
|
|
|
|
// copy constructor duplicates vertices and cells
|
|
Delaunay_triangulation_3(const Delaunay_triangulation_3 & tr)
|
|
: Tr_Base(tr)
|
|
{
|
|
CGAL_triangulation_postcondition( is_valid() );
|
|
}
|
|
|
|
template < typename InputIterator >
|
|
Delaunay_triangulation_3(InputIterator first, InputIterator last,
|
|
const Gt& gt = Gt())
|
|
: Tr_Base(gt)
|
|
{
|
|
insert(first, last);
|
|
}
|
|
|
|
template < class InputIterator >
|
|
int
|
|
insert(InputIterator first, InputIterator last)
|
|
{
|
|
int n = number_of_vertices();
|
|
|
|
std::vector<Point> points (first, last);
|
|
std::random_shuffle (points.begin(), points.end());
|
|
spatial_sort (points.begin(), points.end(), geom_traits());
|
|
|
|
Cell_handle hint;
|
|
for (typename std::vector<Point>::const_iterator p = points.begin(), end = points.end();
|
|
p != end; ++p)
|
|
hint = insert (*p, hint)->cell();
|
|
|
|
return number_of_vertices() - n;
|
|
}
|
|
|
|
Vertex_handle insert(const Point & p, Cell_handle start = Cell_handle());
|
|
|
|
Vertex_handle insert(const Point & p, Locate_type lt,
|
|
Cell_handle c, int li, int);
|
|
|
|
Vertex_handle move_point(Vertex_handle v, const Point & p);
|
|
|
|
template <class OutputIteratorBoundaryFacets,
|
|
class OutputIteratorCells,
|
|
class OutputIteratorInternalFacets>
|
|
Triple<OutputIteratorBoundaryFacets,
|
|
OutputIteratorCells,
|
|
OutputIteratorInternalFacets>
|
|
find_conflicts(const Point &p, Cell_handle c,
|
|
OutputIteratorBoundaryFacets bfit,
|
|
OutputIteratorCells cit,
|
|
OutputIteratorInternalFacets ifit) const
|
|
{
|
|
CGAL_triangulation_precondition(dimension() >= 2);
|
|
|
|
std::vector<Cell_handle> cells;
|
|
cells.reserve(32);
|
|
std::vector<Facet> facets;
|
|
facets.reserve(64);
|
|
|
|
if (dimension() == 2) {
|
|
Conflict_tester_2 tester(p, this);
|
|
ifit = Tr_Base::find_conflicts
|
|
(c, tester,
|
|
make_triple(std::back_inserter(facets),
|
|
std::back_inserter(cells),
|
|
ifit)).third;
|
|
}
|
|
else {
|
|
Conflict_tester_3 tester(p, this);
|
|
ifit = Tr_Base::find_conflicts
|
|
(c, tester,
|
|
make_triple(std::back_inserter(facets),
|
|
std::back_inserter(cells),
|
|
ifit)).third;
|
|
}
|
|
|
|
// Reset the conflict flag on the boundary.
|
|
for(typename std::vector<Facet>::iterator fit=facets.begin();
|
|
fit != facets.end(); ++fit) {
|
|
fit->first->neighbor(fit->second)->set_in_conflict_flag(0);
|
|
*bfit++ = *fit;
|
|
}
|
|
|
|
// Reset the conflict flag in the conflict cells.
|
|
for(typename std::vector<Cell_handle>::iterator ccit=cells.begin();
|
|
ccit != cells.end(); ++ccit) {
|
|
(*ccit)->set_in_conflict_flag(0);
|
|
*cit++ = *ccit;
|
|
}
|
|
return make_triple(bfit, cit, ifit);
|
|
}
|
|
|
|
template <class OutputIteratorBoundaryFacets, class OutputIteratorCells>
|
|
std::pair<OutputIteratorBoundaryFacets, OutputIteratorCells>
|
|
find_conflicts(const Point &p, Cell_handle c,
|
|
OutputIteratorBoundaryFacets bfit,
|
|
OutputIteratorCells cit) const
|
|
{
|
|
Triple<OutputIteratorBoundaryFacets,
|
|
OutputIteratorCells,
|
|
Emptyset_iterator> t = find_conflicts(p, c, bfit, cit,
|
|
Emptyset_iterator());
|
|
return std::make_pair(t.first, t.second);
|
|
}
|
|
|
|
// Returns the vertices on the boundary of the conflict hole.
|
|
template <class OutputIterator>
|
|
OutputIterator
|
|
vertices_in_conflict(const Point&p, Cell_handle c, OutputIterator res) const
|
|
{
|
|
CGAL_triangulation_precondition(dimension() >= 2);
|
|
|
|
// Get the facets on the boundary of the hole.
|
|
std::vector<Facet> facets;
|
|
find_conflicts(p, c, std::back_inserter(facets),
|
|
Emptyset_iterator(), Emptyset_iterator());
|
|
|
|
// Then extract uniquely the vertices.
|
|
std::set<Vertex_handle> vertices;
|
|
if (dimension() == 3) {
|
|
for (typename std::vector<Facet>::const_iterator i = facets.begin();
|
|
i != facets.end(); ++i) {
|
|
vertices.insert(i->first->vertex((i->second+1)&3));
|
|
vertices.insert(i->first->vertex((i->second+2)&3));
|
|
vertices.insert(i->first->vertex((i->second+3)&3));
|
|
}
|
|
} else {
|
|
for (typename std::vector<Facet>::const_iterator i = facets.begin();
|
|
i != facets.end(); ++i) {
|
|
vertices.insert(i->first->vertex(cw(i->second)));
|
|
vertices.insert(i->first->vertex(ccw(i->second)));
|
|
}
|
|
}
|
|
|
|
return std::copy(vertices.begin(), vertices.end(), res);
|
|
}
|
|
|
|
// We return bool only for backward compatibility (it's always true).
|
|
// The documentation mentions void.
|
|
bool remove(Vertex_handle v);
|
|
|
|
template < typename InputIterator >
|
|
int remove(InputIterator first, InputIterator beyond)
|
|
{
|
|
int n = number_of_vertices();
|
|
while (first != beyond) {
|
|
remove(*first);
|
|
++first;
|
|
}
|
|
return n - number_of_vertices();
|
|
}
|
|
|
|
private:
|
|
typedef Facet Edge_2D;
|
|
void remove_2D(Vertex_handle v);
|
|
void make_hole_2D(Vertex_handle v, std::list<Edge_2D> & hole);
|
|
void fill_hole_delaunay_2D(std::list<Edge_2D> & hole);
|
|
|
|
void make_canonical(Vertex_triple& t) const;
|
|
|
|
Vertex_triple
|
|
make_vertex_triple(const Facet& f) const;
|
|
|
|
void remove_3D(Vertex_handle v);
|
|
void remove_3D_new(Vertex_handle v);
|
|
|
|
Bounded_side
|
|
side_of_sphere(const Vertex_handle& v0, const Vertex_handle& v1,
|
|
const Vertex_handle& v2, const Vertex_handle& v3,
|
|
const Point &p, bool perturb) const;
|
|
public:
|
|
|
|
// Queries
|
|
Bounded_side
|
|
side_of_sphere(const Cell_handle& c, const Point & p,
|
|
bool perturb = false) const
|
|
{
|
|
return side_of_sphere(c->vertex(0), c->vertex(1),
|
|
c->vertex(2), c->vertex(3), p, perturb);
|
|
}
|
|
|
|
Bounded_side
|
|
side_of_circle( const Facet & f, const Point & p, bool perturb = false) const
|
|
{
|
|
return side_of_circle(f.first, f.second, p, perturb);
|
|
}
|
|
|
|
Bounded_side
|
|
side_of_circle( const Cell_handle& c, int i, const Point & p,
|
|
bool perturb = false) const;
|
|
|
|
Vertex_handle
|
|
nearest_vertex_in_cell(const Point& p, const Cell_handle& c) const;
|
|
|
|
Vertex_handle
|
|
nearest_vertex(const Point& p, Cell_handle c = Cell_handle()) const;
|
|
|
|
bool is_Gabriel(Cell_handle c, int i) const;
|
|
bool is_Gabriel(Cell_handle c, int i, int j) const;
|
|
bool is_Gabriel(const Facet& f)const ;
|
|
bool is_Gabriel(const Edge& e) const;
|
|
|
|
// Dual functions
|
|
Point dual(Cell_handle c) const;
|
|
|
|
Object dual(const Facet & f) const
|
|
{ return dual( f.first, f.second ); }
|
|
|
|
Object dual(Cell_handle c, int i) const;
|
|
|
|
Line dual_support(Cell_handle c, int i) const;
|
|
|
|
bool is_valid(bool verbose = false, int level = 0) const;
|
|
|
|
bool is_valid(Cell_handle c, bool verbose = false, int level = 0) const;
|
|
|
|
template < class Stream>
|
|
Stream& draw_dual(Stream & os)
|
|
{
|
|
for (Finite_facets_iterator fit = finite_facets_begin(),
|
|
end = finite_facets_end();
|
|
fit != end; ++fit) {
|
|
Object o = dual(*fit);
|
|
if (const Point *p = object_cast<Point>(&o)) os << *p;
|
|
if (const Segment *s = object_cast<Segment>(&o)) os << *s;
|
|
if (const Ray *r = object_cast<Ray>(&o)) os << *r;
|
|
}
|
|
return os;
|
|
}
|
|
|
|
private:
|
|
|
|
Vertex_handle
|
|
nearest_vertex(const Point &p, Vertex_handle v, Vertex_handle w) const
|
|
{
|
|
// In case of equality, v is returned.
|
|
CGAL_triangulation_precondition(v != w);
|
|
|
|
if (is_infinite(v))
|
|
return w;
|
|
if (is_infinite(w))
|
|
return v;
|
|
return less_distance(p, w->point(), v->point()) ? w : v;
|
|
}
|
|
|
|
#ifndef CGAL_CFG_NET2003_MATCHING_BUG
|
|
void make_hole_3D_ear( Vertex_handle v,
|
|
std::vector<Facet> & boundhole,
|
|
std::vector<Cell_handle> & hole);
|
|
#else
|
|
void make_hole_3D_ear( Vertex_handle v,
|
|
std::vector<Facet> & boundhole,
|
|
std::vector<Cell_handle> & hole)
|
|
{
|
|
CGAL_triangulation_expensive_precondition( ! test_dim_down(v) );
|
|
incident_cells(v, std::back_inserter(hole));
|
|
|
|
for (typename std::vector<Cell_handle>::iterator cit = hole.begin();
|
|
cit != hole.end(); ++cit) {
|
|
int indv = (*cit)->index(v);
|
|
Cell_handle opp_cit = (*cit)->neighbor( indv );
|
|
boundhole.push_back(Facet( opp_cit, opp_cit->index(*cit)) );
|
|
|
|
for (int i=0; i<4; i++)
|
|
if ( i != indv )
|
|
(*cit)->vertex(i)->set_cell(opp_cit);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void fill_hole_3D_ear(const std::vector<Facet> & boundhole);
|
|
|
|
void make_hole_3D_new( Vertex_handle v,
|
|
std::map<Vertex_triple,Facet>& outer_map,
|
|
std::vector<Cell_handle> & hole);
|
|
|
|
|
|
class Conflict_tester_3
|
|
{
|
|
const Point &p;
|
|
const Self *t;
|
|
|
|
public:
|
|
|
|
Conflict_tester_3(const Point &pt, const Self *tr)
|
|
: p(pt), t(tr) {}
|
|
|
|
bool operator()(const Cell_handle c) const
|
|
{
|
|
return t->side_of_sphere(c, p, true) == ON_BOUNDED_SIDE;
|
|
}
|
|
Oriented_side compare_weight(const Point &, const Point &) const
|
|
{
|
|
return ZERO;
|
|
}
|
|
bool test_initial_cell(Cell_handle) const
|
|
{
|
|
return true;
|
|
}
|
|
};
|
|
|
|
class Conflict_tester_2
|
|
{
|
|
const Point &p;
|
|
const Self *t;
|
|
|
|
public:
|
|
|
|
Conflict_tester_2(const Point &pt, const Self *tr)
|
|
: p(pt), t(tr) {}
|
|
|
|
bool operator()(const Cell_handle c) const
|
|
{
|
|
return t->side_of_circle(c, 3, p, true) == ON_BOUNDED_SIDE;
|
|
}
|
|
Oriented_side compare_weight(const Point &, const Point &) const
|
|
{
|
|
return ZERO;
|
|
}
|
|
bool test_initial_cell(Cell_handle) const
|
|
{
|
|
return true;
|
|
}
|
|
};
|
|
class Hidden_point_visitor
|
|
{
|
|
public:
|
|
|
|
Hidden_point_visitor() {}
|
|
|
|
template <class InputIterator>
|
|
void process_cells_in_conflict(InputIterator, InputIterator) const {}
|
|
void reinsert_vertices(Vertex_handle ) {}
|
|
Vertex_handle replace_vertex(Cell_handle c, int index,
|
|
const Point &) {
|
|
return c->vertex(index);
|
|
}
|
|
void hide_point(Cell_handle, const Point &) {}
|
|
};
|
|
|
|
class Perturbation_order {
|
|
const Self *t;
|
|
|
|
public:
|
|
Perturbation_order(const Self *tr)
|
|
: t(tr) {}
|
|
|
|
bool operator()(const Point *p, const Point *q) const {
|
|
return t->compare_xyz(*p, *q) == SMALLER;
|
|
}
|
|
};
|
|
|
|
friend class Perturbation_order;
|
|
friend class Conflict_tester_3;
|
|
friend class Conflict_tester_2;
|
|
|
|
Hidden_point_visitor hidden_point_visitor;
|
|
};
|
|
|
|
template < class Gt, class Tds >
|
|
typename Delaunay_triangulation_3<Gt,Tds>::Vertex_handle
|
|
Delaunay_triangulation_3<Gt,Tds>::
|
|
insert(const Point & p, Cell_handle start)
|
|
{
|
|
Locate_type lt;
|
|
int li, lj;
|
|
Cell_handle c = locate(p, lt, li, lj, start);
|
|
return insert(p, lt, c, li, lj);
|
|
}
|
|
|
|
template < class Gt, class Tds >
|
|
typename Delaunay_triangulation_3<Gt,Tds>::Vertex_handle
|
|
Delaunay_triangulation_3<Gt,Tds>::
|
|
insert(const Point & p, Locate_type lt, Cell_handle c, int li, int lj)
|
|
{
|
|
switch (dimension()) {
|
|
case 3:
|
|
{
|
|
Conflict_tester_3 tester(p, this);
|
|
Vertex_handle v = insert_in_conflict(p, lt, c, li, lj,
|
|
tester, hidden_point_visitor);
|
|
return v;
|
|
}// dim 3
|
|
case 2:
|
|
{
|
|
Conflict_tester_2 tester(p, this);
|
|
return insert_in_conflict(p, lt, c, li, lj,
|
|
tester, hidden_point_visitor);
|
|
}//dim 2
|
|
default :
|
|
// dimension <= 1
|
|
// Do not use the generic insert.
|
|
return Tr_Base::insert(p, c);
|
|
}
|
|
}
|
|
|
|
template < class Gt, class Tds >
|
|
typename Delaunay_triangulation_3<Gt,Tds>::Vertex_handle
|
|
Delaunay_triangulation_3<Gt,Tds>::
|
|
move_point(Vertex_handle v, const Point & p)
|
|
{
|
|
CGAL_triangulation_precondition(! is_infinite(v));
|
|
CGAL_triangulation_expensive_precondition(is_vertex(v));
|
|
|
|
// Dummy implementation for a start.
|
|
|
|
// Remember an incident vertex to restart
|
|
// the point location after the removal.
|
|
Cell_handle c = v->cell();
|
|
Vertex_handle old_neighbor = c->vertex(c->index(v) == 0 ? 1 : 0);
|
|
CGAL_triangulation_assertion(old_neighbor != v);
|
|
|
|
remove(v);
|
|
|
|
if (dimension() <= 0)
|
|
return insert(p);
|
|
return insert(p, old_neighbor->cell());
|
|
}
|
|
|
|
template < class Gt, class Tds >
|
|
void
|
|
Delaunay_triangulation_3<Gt,Tds>::
|
|
remove_2D(Vertex_handle v)
|
|
{
|
|
CGAL_triangulation_precondition(dimension() == 2);
|
|
std::list<Edge_2D> hole;
|
|
make_hole_2D(v, hole);
|
|
fill_hole_delaunay_2D(hole);
|
|
tds().delete_vertex(v);
|
|
}
|
|
|
|
|
|
|
|
template <class Gt, class Tds >
|
|
void
|
|
Delaunay_triangulation_3<Gt, Tds>::
|
|
fill_hole_delaunay_2D(std::list<Edge_2D> & first_hole)
|
|
{
|
|
typedef std::list<Edge_2D> Hole;
|
|
|
|
std::vector<Hole> hole_list;
|
|
|
|
Cell_handle f, ff, fn;
|
|
int i, ii, in;
|
|
|
|
hole_list.push_back(first_hole);
|
|
|
|
while( ! hole_list.empty())
|
|
{
|
|
Hole hole = hole_list.back();
|
|
hole_list.pop_back();
|
|
|
|
// if the hole has only three edges, create the triangle
|
|
if (hole.size() == 3) {
|
|
typename Hole::iterator hit = hole.begin();
|
|
f = (*hit).first; i = (*hit).second;
|
|
ff = (* ++hit).first; ii = (*hit).second;
|
|
fn = (* ++hit).first; in = (*hit).second;
|
|
tds().create_face(f, i, ff, ii, fn, in);
|
|
continue;
|
|
}
|
|
|
|
// else find an edge with two finite vertices
|
|
// on the hole boundary
|
|
// and the new triangle adjacent to that edge
|
|
// cut the hole and push it back
|
|
|
|
// first, ensure that a neighboring face
|
|
// whose vertices on the hole boundary are finite
|
|
// is the first of the hole
|
|
while (1) {
|
|
ff = (hole.front()).first;
|
|
ii = (hole.front()).second;
|
|
if ( is_infinite(ff->vertex(cw(ii))) ||
|
|
is_infinite(ff->vertex(ccw(ii)))) {
|
|
hole.push_back(hole.front());
|
|
hole.pop_front();
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
// take the first neighboring face and pop it;
|
|
ff = (hole.front()).first;
|
|
ii = (hole.front()).second;
|
|
hole.pop_front();
|
|
|
|
Vertex_handle v0 = ff->vertex(cw(ii));
|
|
Vertex_handle v1 = ff->vertex(ccw(ii));
|
|
Vertex_handle v2 = infinite_vertex();
|
|
const Point &p0 = v0->point();
|
|
const Point &p1 = v1->point();
|
|
const Point *p2 = NULL; // Initialize to NULL to avoid warning.
|
|
|
|
typename Hole::iterator hdone = hole.end();
|
|
typename Hole::iterator hit = hole.begin();
|
|
typename Hole::iterator cut_after(hit);
|
|
|
|
// if tested vertex is c with respect to the vertex opposite
|
|
// to NULL neighbor,
|
|
// stop at the before last face;
|
|
hdone--;
|
|
for (; hit != hdone; ++hit) {
|
|
fn = hit->first;
|
|
in = hit->second;
|
|
Vertex_handle vv = fn->vertex(ccw(in));
|
|
if (is_infinite(vv)) {
|
|
if (is_infinite(v2))
|
|
cut_after = hit;
|
|
}
|
|
else { // vv is a finite vertex
|
|
const Point &p = vv->point();
|
|
if (coplanar_orientation(p0, p1, p) == COUNTERCLOCKWISE) {
|
|
if (is_infinite(v2) ||
|
|
coplanar_side_of_bounded_circle(p0, p1, *p2, p, true)
|
|
== ON_BOUNDED_SIDE) {
|
|
v2 = vv;
|
|
p2 = &p;
|
|
cut_after = hit;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// create new triangle and update adjacency relations
|
|
Cell_handle newf;
|
|
|
|
//update the hole and push back in the Hole_List stack
|
|
// if v2 belongs to the neighbor following or preceding *f
|
|
// the hole remain a single hole
|
|
// otherwise it is split in two holes
|
|
|
|
fn = (hole.front()).first;
|
|
in = (hole.front()).second;
|
|
if (fn->has_vertex(v2, i) && i == ccw(in)) {
|
|
newf = tds().create_face(ff, ii, fn, in);
|
|
hole.pop_front();
|
|
hole.push_front(Edge_2D(newf, 1));
|
|
hole_list.push_back(hole);
|
|
}
|
|
else{
|
|
fn = (hole.back()).first;
|
|
in = (hole.back()).second;
|
|
if (fn->has_vertex(v2, i) && i == cw(in)) {
|
|
newf = tds().create_face(fn, in, ff, ii);
|
|
hole.pop_back();
|
|
hole.push_back(Edge_2D(newf, 1));
|
|
hole_list.push_back(hole);
|
|
}
|
|
else{
|
|
// split the hole in two holes
|
|
newf = tds().create_face(ff, ii, v2);
|
|
Hole new_hole;
|
|
++cut_after;
|
|
while( hole.begin() != cut_after )
|
|
{
|
|
new_hole.push_back(hole.front());
|
|
hole.pop_front();
|
|
}
|
|
|
|
hole.push_front(Edge_2D(newf, 1));
|
|
new_hole.push_front(Edge_2D(newf, 0));
|
|
hole_list.push_back(hole);
|
|
hole_list.push_back(new_hole);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class Gt, class Tds >
|
|
void
|
|
Delaunay_triangulation_3<Gt, Tds>::
|
|
make_hole_2D(Vertex_handle v, std::list<Edge_2D> & hole)
|
|
{
|
|
std::vector<Cell_handle> to_delete;
|
|
|
|
typename Tds::Face_circulator fc = tds().incident_faces(v);
|
|
typename Tds::Face_circulator done(fc);
|
|
|
|
// We prepare for deleting all interior cells.
|
|
// We ->set_cell() pointers to cells outside the hole.
|
|
// We push the Edges_2D of the boundary (seen from outside) in "hole".
|
|
do {
|
|
Cell_handle f = fc;
|
|
int i = f->index(v);
|
|
Cell_handle fn = f->neighbor(i);
|
|
int in = fn->index(f);
|
|
|
|
f->vertex(cw(i))->set_cell(fn);
|
|
fn->set_neighbor(in, Cell_handle());
|
|
|
|
hole.push_back(Edge_2D(fn, in));
|
|
to_delete.push_back(f);
|
|
|
|
++fc;
|
|
} while (fc != done);
|
|
|
|
tds().delete_cells(to_delete.begin(), to_delete.end());
|
|
}
|
|
|
|
template < class Gt, class Tds >
|
|
void
|
|
Delaunay_triangulation_3<Gt,Tds>::
|
|
make_canonical(Vertex_triple& t) const
|
|
{
|
|
int i = (&*(t.first) < &*(t.second))? 0 : 1;
|
|
if(i==0) {
|
|
i = (&*(t.first) < &*(t.third))? 0 : 2;
|
|
} else {
|
|
i = (&*(t.second) < &*(t.third))? 1 : 2;
|
|
}
|
|
Vertex_handle tmp;
|
|
switch(i){
|
|
case 0: return;
|
|
case 1:
|
|
tmp = t.first;
|
|
t.first = t.second;
|
|
t.second = t.third;
|
|
t.third = tmp;
|
|
return;
|
|
default:
|
|
tmp = t.first;
|
|
t.first = t.third;
|
|
t.third = t.second;
|
|
t.second = tmp;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
template < class Gt, class Tds >
|
|
typename Delaunay_triangulation_3<Gt,Tds>::Vertex_triple
|
|
Delaunay_triangulation_3<Gt,Tds>::
|
|
make_vertex_triple(const Facet& f) const
|
|
{
|
|
// static const int vertex_triple_index[4][3] = { {1, 3, 2}, {0, 2, 3},
|
|
// {0, 3, 1}, {0, 1, 2} };
|
|
Cell_handle ch = f.first;
|
|
int i = f.second;
|
|
|
|
return Vertex_triple(ch->vertex(vertex_triple_index(i,0)),
|
|
ch->vertex(vertex_triple_index(i,1)),
|
|
ch->vertex(vertex_triple_index(i,2)));
|
|
}
|
|
|
|
|
|
template < class Gt, class Tds >
|
|
void
|
|
Delaunay_triangulation_3<Gt,Tds>::
|
|
remove_3D(Vertex_handle v)
|
|
{
|
|
std::vector<Facet> boundhole; // facets on the boundary of the hole
|
|
boundhole.reserve(64); // 27 on average.
|
|
std::vector<Cell_handle> hole;
|
|
hole.reserve(64);
|
|
|
|
make_hole_3D_ear(v, boundhole, hole);
|
|
|
|
fill_hole_3D_ear(boundhole);
|
|
tds().delete_vertex(v);
|
|
tds().delete_cells(hole.begin(), hole.end());
|
|
}
|
|
|
|
|
|
template < class Gt, class Tds >
|
|
void
|
|
Delaunay_triangulation_3<Gt,Tds>::
|
|
remove_3D_new(Vertex_handle v)
|
|
{
|
|
std::vector<Cell_handle> hole;
|
|
hole.reserve(64);
|
|
|
|
// Construct the set of vertex triples on the boundary
|
|
// with the facet just behind
|
|
typedef std::map<Vertex_triple,Facet> Vertex_triple_Facet_map;
|
|
Vertex_triple_Facet_map outer_map;
|
|
Vertex_triple_Facet_map inner_map;
|
|
|
|
make_hole_3D_new(v, outer_map, hole);
|
|
|
|
bool inf = false;
|
|
unsigned int i;
|
|
// collect all vertices on the boundary
|
|
std::vector<Vertex_handle> vertices;
|
|
vertices.reserve(64);
|
|
|
|
incident_vertices(v, std::back_inserter(vertices));
|
|
|
|
// create a Delaunay triangulation of the points on the boundary
|
|
// and make a map from the vertices in aux towards the vertices in *this
|
|
Self aux;
|
|
|
|
Unique_hash_map<Vertex_handle,Vertex_handle> vmap;
|
|
|
|
Cell_handle ch = Cell_handle();
|
|
for(i=0; i < vertices.size(); i++){
|
|
if(! is_infinite(vertices[i])){
|
|
Vertex_handle vh = aux.insert(vertices[i]->point(), ch);
|
|
ch = vh->cell();
|
|
vmap[vh] = vertices[i];
|
|
}else {
|
|
inf = true;
|
|
}
|
|
}
|
|
|
|
if(aux.dimension()==2){
|
|
Vertex_handle fake_inf = aux.insert(v->point());
|
|
vmap[fake_inf] = infinite_vertex();
|
|
} else {
|
|
vmap[aux.infinite_vertex()] = infinite_vertex();
|
|
}
|
|
|
|
CGAL_triangulation_assertion(aux.dimension() == 3);
|
|
|
|
// Construct the set of vertex triples of aux
|
|
// We reorient the vertex triple so that it matches those from outer_map
|
|
// Also note that we use the vertices of *this, not of aux
|
|
|
|
if(inf){
|
|
for(All_cells_iterator it = aux.all_cells_begin();
|
|
it != aux.all_cells_end();
|
|
++it){
|
|
for(i=0; i < 4; i++){
|
|
Facet f = std::pair<Cell_handle,int>(it,i);
|
|
Vertex_triple vt_aux = make_vertex_triple(f);
|
|
Vertex_triple vt(vmap[vt_aux.first],vmap[vt_aux.third],vmap[vt_aux.second]);
|
|
make_canonical(vt);
|
|
inner_map[vt]= f;
|
|
}
|
|
}
|
|
} else {
|
|
for(Finite_cells_iterator it = aux.finite_cells_begin();
|
|
it != aux.finite_cells_end();
|
|
++it){
|
|
for(i=0; i < 4; i++){
|
|
Facet f = std::pair<Cell_handle,int>(it,i);
|
|
Vertex_triple vt_aux = make_vertex_triple(f);
|
|
Vertex_triple vt(vmap[vt_aux.first],vmap[vt_aux.third],vmap[vt_aux.second]);
|
|
make_canonical(vt);
|
|
inner_map[vt]= f;
|
|
}
|
|
}
|
|
}
|
|
// Grow inside the hole, by extending the surface
|
|
while(! outer_map.empty()){
|
|
typename Vertex_triple_Facet_map::iterator oit = outer_map.begin();
|
|
while(is_infinite(oit->first.first) ||
|
|
is_infinite(oit->first.second) ||
|
|
is_infinite(oit->first.third)){
|
|
++oit;
|
|
// otherwise the lookup in the inner_map fails
|
|
// because the infinite vertices are different
|
|
}
|
|
typename Vertex_triple_Facet_map::value_type o_vt_f_pair = *oit;
|
|
Cell_handle o_ch = o_vt_f_pair.second.first;
|
|
unsigned int o_i = o_vt_f_pair.second.second;
|
|
|
|
typename Vertex_triple_Facet_map::iterator iit =
|
|
inner_map.find(o_vt_f_pair.first);
|
|
CGAL_triangulation_assertion(iit != inner_map.end());
|
|
typename Vertex_triple_Facet_map::value_type i_vt_f_pair = *iit;
|
|
Cell_handle i_ch = i_vt_f_pair.second.first;
|
|
unsigned int i_i = i_vt_f_pair.second.second;
|
|
|
|
// create a new cell and glue it to the outer surface
|
|
Cell_handle new_ch = tds().create_cell();
|
|
new_ch->set_vertices(vmap[i_ch->vertex(0)], vmap[i_ch->vertex(1)],
|
|
vmap[i_ch->vertex(2)], vmap[i_ch->vertex(3)]);
|
|
|
|
o_ch->set_neighbor(o_i,new_ch);
|
|
new_ch->set_neighbor(i_i, o_ch);
|
|
|
|
// for the other faces check, if they can also be glued
|
|
for(i = 0; i < 4; i++){
|
|
if(i != i_i){
|
|
Facet f = std::pair<Cell_handle,int>(new_ch,i);
|
|
Vertex_triple vt = make_vertex_triple(f);
|
|
make_canonical(vt);
|
|
std::swap(vt.second,vt.third);
|
|
typename Vertex_triple_Facet_map::iterator oit2 = outer_map.find(vt);
|
|
if(oit2 == outer_map.end()){
|
|
std::swap(vt.second,vt.third);
|
|
outer_map[vt]= f;
|
|
} else {
|
|
// glue the faces
|
|
typename Vertex_triple_Facet_map::value_type o_vt_f_pair2 = *oit2;
|
|
Cell_handle o_ch2 = o_vt_f_pair2.second.first;
|
|
int o_i2 = o_vt_f_pair2.second.second;
|
|
o_ch2->set_neighbor(o_i2,new_ch);
|
|
new_ch->set_neighbor(i, o_ch2);
|
|
outer_map.erase(oit2);
|
|
}
|
|
}
|
|
}
|
|
outer_map.erase(oit);
|
|
}
|
|
tds().delete_vertex(v);
|
|
tds().delete_cells(hole.begin(), hole.end());
|
|
}
|
|
|
|
|
|
|
|
template < class Gt, class Tds >
|
|
bool
|
|
Delaunay_triangulation_3<Gt,Tds>::
|
|
remove(Vertex_handle v)
|
|
{
|
|
CGAL_triangulation_precondition( v != Vertex_handle());
|
|
CGAL_triangulation_precondition( !is_infinite(v));
|
|
CGAL_triangulation_expensive_precondition(is_vertex(v));
|
|
|
|
if (dimension() >= 0 && test_dim_down(v)) {
|
|
tds().remove_decrease_dimension(v);
|
|
// Now try to see if we need to re-orient.
|
|
if (dimension() == 2) {
|
|
Facet f = *finite_facets_begin();
|
|
if (coplanar_orientation(f.first->vertex(0)->point(),
|
|
f.first->vertex(1)->point(),
|
|
f.first->vertex(2)->point()) == NEGATIVE)
|
|
tds().reorient();
|
|
}
|
|
CGAL_triangulation_expensive_postcondition(is_valid());
|
|
return true;
|
|
}
|
|
|
|
if (dimension() == 1) {
|
|
tds().remove_from_maximal_dimension_simplex(v);
|
|
CGAL_triangulation_expensive_postcondition(is_valid());
|
|
return true;
|
|
}
|
|
|
|
if (dimension() == 2) {
|
|
remove_2D(v);
|
|
CGAL_triangulation_expensive_postcondition(is_valid());
|
|
return true;
|
|
}
|
|
|
|
CGAL_triangulation_assertion( dimension() == 3 );
|
|
|
|
|
|
#ifdef CGAL_DELAUNAY_3_OLD_REMOVE
|
|
remove_3D(v);
|
|
#else
|
|
remove_3D_new(v);
|
|
#endif
|
|
|
|
CGAL_triangulation_expensive_postcondition(is_valid());
|
|
return true;
|
|
}
|
|
|
|
template < class Gt, class Tds >
|
|
Oriented_side
|
|
Delaunay_triangulation_3<Gt,Tds>::
|
|
side_of_oriented_sphere(const Point &p0, const Point &p1, const Point &p2,
|
|
const Point &p3, const Point &p, bool perturb) const
|
|
{
|
|
CGAL_triangulation_precondition( orientation(p0, p1, p2, p3) == POSITIVE );
|
|
|
|
Oriented_side os =
|
|
geom_traits().side_of_oriented_sphere_3_object()(p0, p1, p2, p3, p);
|
|
|
|
if (os != ON_ORIENTED_BOUNDARY || !perturb)
|
|
return os;
|
|
|
|
// We are now in a degenerate case => we do a symbolic perturbation.
|
|
|
|
// We sort the points lexicographically.
|
|
const Point * points[5] = {&p0, &p1, &p2, &p3, &p};
|
|
std::sort(points, points+5, Perturbation_order(this) );
|
|
|
|
// We successively look whether the leading monomial, then 2nd monomial
|
|
// of the determinant has non null coefficient.
|
|
// 2 iterations are enough (cf paper)
|
|
for (int i=4; i>2; --i) {
|
|
if (points[i] == &p)
|
|
return ON_NEGATIVE_SIDE; // since p0 p1 p2 p3 are non coplanar
|
|
// and positively oriented
|
|
Orientation o;
|
|
if (points[i] == &p3 && (o = orientation(p0,p1,p2,p)) != COPLANAR )
|
|
return o;
|
|
if (points[i] == &p2 && (o = orientation(p0,p1,p,p3)) != COPLANAR )
|
|
return o;
|
|
if (points[i] == &p1 && (o = orientation(p0,p,p2,p3)) != COPLANAR )
|
|
return o;
|
|
if (points[i] == &p0 && (o = orientation(p,p1,p2,p3)) != COPLANAR )
|
|
return o;
|
|
}
|
|
|
|
CGAL_triangulation_assertion(false);
|
|
return ON_NEGATIVE_SIDE;
|
|
}
|
|
|
|
template < class Gt, class Tds >
|
|
Bounded_side
|
|
Delaunay_triangulation_3<Gt,Tds>::
|
|
coplanar_side_of_bounded_circle(const Point &p0, const Point &p1,
|
|
const Point &p2, const Point &p, bool perturb) const
|
|
{
|
|
// In dim==2, we should even be able to assert orient == POSITIVE.
|
|
CGAL_triangulation_precondition( coplanar_orientation(p0, p1, p2)
|
|
!= COLLINEAR );
|
|
|
|
Bounded_side bs =
|
|
geom_traits().coplanar_side_of_bounded_circle_3_object()(p0, p1, p2, p);
|
|
|
|
if (bs != ON_BOUNDARY || !perturb)
|
|
return bs;
|
|
|
|
// We are now in a degenerate case => we do a symbolic perturbation.
|
|
|
|
// We sort the points lexicographically.
|
|
const Point * points[4] = {&p0, &p1, &p2, &p};
|
|
std::sort(points, points+4, Perturbation_order(this) );
|
|
|
|
Orientation local = coplanar_orientation(p0, p1, p2);
|
|
|
|
// we successively look whether the leading monomial, then 2nd monimial,
|
|
// then 3rd monomial, of the determinant which has non null coefficient
|
|
// [syl] : TODO : Probably it can be stopped earlier like the 3D version
|
|
for (int i=3; i>0; --i) {
|
|
if (points[i] == &p)
|
|
return Bounded_side(NEGATIVE); // since p0 p1 p2 are non collinear
|
|
// but not necessarily positively oriented
|
|
Orientation o;
|
|
if (points[i] == &p2
|
|
&& (o = coplanar_orientation(p0,p1,p)) != COLLINEAR )
|
|
// [syl] : TODO : I'm not sure of the signs here (nor the rest :)
|
|
return Bounded_side(o*local);
|
|
if (points[i] == &p1
|
|
&& (o = coplanar_orientation(p0,p,p2)) != COLLINEAR )
|
|
return Bounded_side(o*local);
|
|
if (points[i] == &p0
|
|
&& (o = coplanar_orientation(p,p1,p2)) != COLLINEAR )
|
|
return Bounded_side(o*local);
|
|
}
|
|
|
|
// case when the first non null coefficient is the coefficient of
|
|
// the 4th monomial
|
|
// moreover, the tests (points[] == &p) were false up to here, so the
|
|
// monomial corresponding to p is the only monomial with non-zero
|
|
// coefficient, it is equal to coplanar_orient(p0,p1,p2) == positive
|
|
// so, no further test is required
|
|
return Bounded_side(-local); //ON_UNBOUNDED_SIDE;
|
|
}
|
|
|
|
template < class Gt, class Tds >
|
|
Bounded_side
|
|
Delaunay_triangulation_3<Gt,Tds>::
|
|
side_of_sphere(const Vertex_handle& v0, const Vertex_handle& v1,
|
|
const Vertex_handle& v2, const Vertex_handle& v3,
|
|
const Point &p, bool perturb) const
|
|
{
|
|
CGAL_triangulation_precondition( dimension() == 3 );
|
|
|
|
// TODO :
|
|
// - avoid accessing points of infinite vertex
|
|
// - share the 4 codes below (see old version)
|
|
const Point &p0 = v0->point();
|
|
const Point &p1 = v1->point();
|
|
const Point &p2 = v2->point();
|
|
const Point &p3 = v3->point();
|
|
|
|
if (is_infinite(v0)) {
|
|
Orientation o = orientation(p2, p1, p3, p);
|
|
if (o != COPLANAR)
|
|
return Bounded_side(o);
|
|
return coplanar_side_of_bounded_circle(p2, p1, p3, p, perturb);
|
|
}
|
|
|
|
if (is_infinite(v1)) {
|
|
Orientation o = orientation(p2, p3, p0, p);
|
|
if (o != COPLANAR)
|
|
return Bounded_side(o);
|
|
return coplanar_side_of_bounded_circle(p2, p3, p0, p, perturb);
|
|
}
|
|
|
|
if (is_infinite(v2)) {
|
|
Orientation o = orientation(p1, p0, p3, p);
|
|
if (o != COPLANAR)
|
|
return Bounded_side(o);
|
|
return coplanar_side_of_bounded_circle(p1, p0, p3, p, perturb);
|
|
}
|
|
|
|
if (is_infinite(v3)) {
|
|
Orientation o = orientation(p0, p1, p2, p);
|
|
if (o != COPLANAR)
|
|
return Bounded_side(o);
|
|
return coplanar_side_of_bounded_circle(p0, p1, p2, p, perturb);
|
|
}
|
|
|
|
return (Bounded_side) side_of_oriented_sphere(p0, p1, p2, p3, p, perturb);
|
|
}
|
|
|
|
template < class Gt, class Tds >
|
|
Bounded_side
|
|
Delaunay_triangulation_3<Gt,Tds>::
|
|
side_of_circle(const Cell_handle& c, int i,
|
|
const Point & p, bool perturb) const
|
|
// precondition : dimension >=2
|
|
// in dimension 3, - for a finite facet
|
|
// returns ON_BOUNDARY if the point lies on the circle,
|
|
// ON_UNBOUNDED_SIDE when exterior, ON_BOUNDED_SIDE
|
|
// interior
|
|
// for an infinite facet, considers the plane defined by the
|
|
// adjacent finite facet of the same cell, and does the same as in
|
|
// dimension 2 in this plane
|
|
// in dimension 2, for an infinite facet
|
|
// in this case, returns ON_BOUNDARY if the point lies on the
|
|
// finite edge (endpoints included)
|
|
// ON_BOUNDED_SIDE for a point in the open half-plane
|
|
// ON_UNBOUNDED_SIDE elsewhere
|
|
{
|
|
CGAL_triangulation_precondition( dimension() >= 2 );
|
|
int i3 = 5;
|
|
|
|
if ( dimension() == 2 ) {
|
|
CGAL_triangulation_precondition( i == 3 );
|
|
// the triangulation is supposed to be valid, ie the facet
|
|
// with vertices 0 1 2 in this order is positively oriented
|
|
if ( ! c->has_vertex( infinite_vertex(), i3 ) )
|
|
return coplanar_side_of_bounded_circle( c->vertex(0)->point(),
|
|
c->vertex(1)->point(),
|
|
c->vertex(2)->point(),
|
|
p, perturb);
|
|
// else infinite facet
|
|
// v1, v2 finite vertices of the facet such that v1,v2,infinite
|
|
// is positively oriented
|
|
Vertex_handle v1 = c->vertex( ccw(i3) ),
|
|
v2 = c->vertex( cw(i3) );
|
|
CGAL_triangulation_assertion(coplanar_orientation(v1->point(), v2->point(),
|
|
mirror_vertex(c, i3)->point()) == NEGATIVE);
|
|
Orientation o = coplanar_orientation(v1->point(), v2->point(), p);
|
|
if ( o != COLLINEAR )
|
|
return Bounded_side( o );
|
|
// because p is in f iff
|
|
// it does not lie on the same side of v1v2 as vn
|
|
int i_e;
|
|
Locate_type lt;
|
|
// case when p collinear with v1v2
|
|
return side_of_segment( p,
|
|
v1->point(), v2->point(),
|
|
lt, i_e );
|
|
}
|
|
|
|
// else dimension == 3
|
|
CGAL_triangulation_precondition( i >= 0 && i < 4 );
|
|
if ( ( ! c->has_vertex(infinite_vertex(),i3) ) || ( i3 != i ) ) {
|
|
// finite facet
|
|
// initialization of i0 i1 i2, vertices of the facet positively
|
|
// oriented (if the triangulation is valid)
|
|
int i0 = (i>0) ? 0 : 1;
|
|
int i1 = (i>1) ? 1 : 2;
|
|
int i2 = (i>2) ? 2 : 3;
|
|
CGAL_triangulation_precondition( coplanar( c->vertex(i0)->point(),
|
|
c->vertex(i1)->point(),
|
|
c->vertex(i2)->point(),
|
|
p ) );
|
|
return coplanar_side_of_bounded_circle( c->vertex(i0)->point(),
|
|
c->vertex(i1)->point(),
|
|
c->vertex(i2)->point(),
|
|
p, perturb);
|
|
}
|
|
|
|
//else infinite facet
|
|
// v1, v2 finite vertices of the facet such that v1,v2,infinite
|
|
// is positively oriented
|
|
Vertex_handle v1 = c->vertex( next_around_edge(i3,i) ),
|
|
v2 = c->vertex( next_around_edge(i,i3) );
|
|
Orientation o = (Orientation)
|
|
(coplanar_orientation( v1->point(), v2->point(),
|
|
c->vertex(i)->point()) *
|
|
coplanar_orientation( v1->point(), v2->point(), p ));
|
|
// then the code is duplicated from 2d case
|
|
if ( o != COLLINEAR )
|
|
return Bounded_side( -o );
|
|
// because p is in f iff
|
|
// it is not on the same side of v1v2 as c->vertex(i)
|
|
int i_e;
|
|
Locate_type lt;
|
|
// case when p collinear with v1v2
|
|
return side_of_segment( p,
|
|
v1->point(), v2->point(),
|
|
lt, i_e );
|
|
}
|
|
|
|
template < class Gt, class Tds >
|
|
typename Delaunay_triangulation_3<Gt,Tds>::Vertex_handle
|
|
Delaunay_triangulation_3<Gt,Tds>::
|
|
nearest_vertex_in_cell(const Point& p, const Cell_handle& c) const
|
|
// Returns the finite vertex of the cell c which is the closest to p.
|
|
{
|
|
CGAL_triangulation_precondition(dimension() >= 1);
|
|
|
|
Vertex_handle nearest = nearest_vertex(p, c->vertex(0), c->vertex(1));
|
|
if (dimension() >= 2) {
|
|
nearest = nearest_vertex(p, nearest, c->vertex(2));
|
|
if (dimension() == 3)
|
|
nearest = nearest_vertex(p, nearest, c->vertex(3));
|
|
}
|
|
return nearest;
|
|
}
|
|
|
|
template < class Gt, class Tds >
|
|
typename Delaunay_triangulation_3<Gt,Tds>::Vertex_handle
|
|
Delaunay_triangulation_3<Gt,Tds>::
|
|
nearest_vertex(const Point& p, Cell_handle start) const
|
|
{
|
|
if (number_of_vertices() == 0)
|
|
return Vertex_handle();
|
|
|
|
// Use a brute-force algorithm if dimension < 3.
|
|
if (dimension() < 3) {
|
|
Finite_vertices_iterator vit = finite_vertices_begin();
|
|
Vertex_handle res = vit;
|
|
for (++vit; vit != finite_vertices_end(); ++vit)
|
|
res = nearest_vertex(p, res, vit);
|
|
return res;
|
|
}
|
|
|
|
Locate_type lt;
|
|
int li, lj;
|
|
Cell_handle c = locate(p, lt, li, lj, start);
|
|
if (lt == Tr_Base::VERTEX)
|
|
return c->vertex(li);
|
|
|
|
// - start with the closest vertex from the located cell.
|
|
// - repeatedly take the nearest of its incident vertices if any
|
|
// - if not, we're done.
|
|
Vertex_handle nearest = nearest_vertex_in_cell(p, c);
|
|
std::vector<Vertex_handle> vs;
|
|
vs.reserve(32);
|
|
while (true) {
|
|
Vertex_handle tmp = nearest;
|
|
incident_vertices(nearest, std::back_inserter(vs));
|
|
for (typename std::vector<Vertex_handle>::const_iterator
|
|
vsit = vs.begin(); vsit != vs.end(); ++vsit)
|
|
tmp = nearest_vertex(p, tmp, *vsit);
|
|
if (tmp == nearest)
|
|
break;
|
|
vs.clear();
|
|
nearest = tmp;
|
|
}
|
|
|
|
return nearest;
|
|
}
|
|
|
|
|
|
template < class Gt, class Tds >
|
|
bool
|
|
Delaunay_triangulation_3<Gt,Tds>::
|
|
is_Gabriel(const Facet& f) const
|
|
{
|
|
return is_Gabriel(f.first, f.second);
|
|
}
|
|
|
|
template < class Gt, class Tds >
|
|
bool
|
|
Delaunay_triangulation_3<Gt,Tds>::
|
|
is_Gabriel(Cell_handle c, int i) const
|
|
{
|
|
CGAL_triangulation_precondition(dimension() == 3 && !is_infinite(c,i));
|
|
typename Geom_traits::Side_of_bounded_sphere_3
|
|
side_of_bounded_sphere =
|
|
geom_traits().side_of_bounded_sphere_3_object();
|
|
|
|
if ((!is_infinite(c->vertex(i))) &&
|
|
side_of_bounded_sphere (
|
|
c->vertex(vertex_triple_index(i,0))->point(),
|
|
c->vertex(vertex_triple_index(i,1))->point(),
|
|
c->vertex(vertex_triple_index(i,2))->point(),
|
|
c->vertex(i)->point()) == ON_BOUNDED_SIDE ) return false;
|
|
Cell_handle neighbor = c->neighbor(i);
|
|
int in = neighbor->index(c);
|
|
|
|
if ((!is_infinite(neighbor->vertex(in))) &&
|
|
side_of_bounded_sphere(
|
|
c->vertex(vertex_triple_index(i,0))->point(),
|
|
c->vertex(vertex_triple_index(i,1))->point(),
|
|
c->vertex(vertex_triple_index(i,2))->point(),
|
|
neighbor->vertex(in)->point()) == ON_BOUNDED_SIDE ) return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
template < class Gt, class Tds >
|
|
bool
|
|
Delaunay_triangulation_3<Gt,Tds>::
|
|
is_Gabriel(const Edge& e) const
|
|
{
|
|
return is_Gabriel(e.first, e.second, e.third);
|
|
}
|
|
|
|
template < class Gt, class Tds >
|
|
bool
|
|
Delaunay_triangulation_3<Gt,Tds>::
|
|
is_Gabriel(Cell_handle c, int i, int j) const
|
|
{
|
|
CGAL_triangulation_precondition(dimension() == 3 && !is_infinite(c,i,j));
|
|
typename Geom_traits::Side_of_bounded_sphere_3
|
|
side_of_bounded_sphere =
|
|
geom_traits().side_of_bounded_sphere_3_object();
|
|
|
|
Facet_circulator fcirc = incident_facets(c,i,j),
|
|
fdone(fcirc);
|
|
Vertex_handle v1 = c->vertex(i);
|
|
Vertex_handle v2 = c->vertex(j);
|
|
do {
|
|
// test whether the vertex of cc opposite to *fcirc
|
|
// is inside the sphere defined by the edge e = (s, i,j)
|
|
Cell_handle cc = (*fcirc).first;
|
|
int ii = (*fcirc).second;
|
|
if (!is_infinite(cc->vertex(ii)) &&
|
|
side_of_bounded_sphere( v1->point(),
|
|
v2->point(),
|
|
cc->vertex(ii)->point())
|
|
== ON_BOUNDED_SIDE ) return false;
|
|
} while(++fcirc != fdone);
|
|
return true;
|
|
}
|
|
|
|
template < class Gt, class Tds >
|
|
typename Delaunay_triangulation_3<Gt,Tds>::Point
|
|
Delaunay_triangulation_3<Gt,Tds>::
|
|
dual(Cell_handle c) const
|
|
{
|
|
CGAL_triangulation_precondition(dimension()==3);
|
|
CGAL_triangulation_precondition( ! is_infinite(c) );
|
|
return c->circumcenter(geom_traits());
|
|
}
|
|
|
|
|
|
template < class Gt, class Tds >
|
|
typename Delaunay_triangulation_3<Gt,Tds>::Object
|
|
Delaunay_triangulation_3<Gt,Tds>::
|
|
dual(Cell_handle c, int i) const
|
|
{
|
|
CGAL_triangulation_precondition(dimension()>=2);
|
|
CGAL_triangulation_precondition( ! is_infinite(c,i) );
|
|
|
|
if ( dimension() == 2 ) {
|
|
CGAL_triangulation_precondition( i == 3 );
|
|
return construct_object( construct_circumcenter(c->vertex(0)->point(),
|
|
c->vertex(1)->point(),
|
|
c->vertex(2)->point()) );
|
|
}
|
|
|
|
// dimension() == 3
|
|
Cell_handle n = c->neighbor(i);
|
|
if ( ! is_infinite(c) && ! is_infinite(n) )
|
|
return construct_object(construct_segment( dual(c), dual(n) ));
|
|
|
|
// either n or c is infinite
|
|
int in;
|
|
if ( is_infinite(c) )
|
|
in = n->index(c);
|
|
else {
|
|
n = c;
|
|
in = i;
|
|
}
|
|
// n now denotes a finite cell, either c or c->neighbor(i)
|
|
unsigned char ind[3] = {(in+1)&3,(in+2)&3,(in+3)&3};
|
|
if ( (in&1) == 1 )
|
|
std::swap(ind[0], ind[1]);
|
|
const Point& p = n->vertex(ind[0])->point();
|
|
const Point& q = n->vertex(ind[1])->point();
|
|
const Point& r = n->vertex(ind[2])->point();
|
|
|
|
Line l = construct_equidistant_line( p, q, r );
|
|
return construct_object(construct_ray( dual(n), l));
|
|
}
|
|
|
|
|
|
|
|
template < class Gt, class Tds >
|
|
typename Delaunay_triangulation_3<Gt,Tds>::Line
|
|
Delaunay_triangulation_3<Gt,Tds>::
|
|
dual_support(Cell_handle c, int i) const
|
|
{
|
|
CGAL_triangulation_precondition(dimension()>=2);
|
|
CGAL_triangulation_precondition( ! is_infinite(c,i) );
|
|
|
|
if ( dimension() == 2 ) {
|
|
CGAL_triangulation_precondition( i == 3 );
|
|
return construct_equidistant_line( c->vertex(0)->point(),
|
|
c->vertex(1)->point(),
|
|
c->vertex(2)->point() );
|
|
}
|
|
|
|
return construct_equidistant_line( c->vertex((i+1)&3)->point(),
|
|
c->vertex((i+2)&3)->point(),
|
|
c->vertex((i+3)&3)->point() );
|
|
}
|
|
|
|
|
|
template < class Gt, class Tds >
|
|
bool
|
|
Delaunay_triangulation_3<Gt,Tds>::
|
|
is_valid(bool verbose, int level) const
|
|
{
|
|
if ( ! tds().is_valid(verbose,level) ) {
|
|
if (verbose)
|
|
std::cerr << "invalid data structure" << std::endl;
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
|
|
if ( infinite_vertex() == Vertex_handle() ) {
|
|
if (verbose)
|
|
std::cerr << "no infinite vertex" << std::endl;
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
|
|
switch ( dimension() ) {
|
|
case 3:
|
|
{
|
|
Finite_cells_iterator it;
|
|
for ( it = finite_cells_begin(); it != finite_cells_end(); ++it ) {
|
|
is_valid_finite(it);
|
|
for (int i=0; i<4; i++ ) {
|
|
if ( !is_infinite
|
|
(it->neighbor(i)->vertex(it->neighbor(i)->index(it))) ) {
|
|
if ( side_of_sphere
|
|
(it,
|
|
it->neighbor(i)->vertex(it->neighbor(i)->index(it))->point())
|
|
== ON_BOUNDED_SIDE ) {
|
|
if (verbose)
|
|
std::cerr << "non-empty sphere " << std::endl;
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case 2:
|
|
{
|
|
Finite_facets_iterator it;
|
|
for ( it = finite_facets_begin(); it != finite_facets_end(); ++it ) {
|
|
is_valid_finite((*it).first);
|
|
for (int i=0; i<3; i++ ) {
|
|
if( !is_infinite
|
|
((*it).first->neighbor(i)->vertex( (((*it).first)->neighbor(i))
|
|
->index((*it).first))) ) {
|
|
if ( side_of_circle ( (*it).first, 3,
|
|
(*it).first->neighbor(i)->
|
|
vertex( (((*it).first)->neighbor(i))
|
|
->index((*it).first) )->point() )
|
|
== ON_BOUNDED_SIDE ) {
|
|
if (verbose)
|
|
std::cerr << "non-empty circle " << std::endl;
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case 1:
|
|
{
|
|
Finite_edges_iterator it;
|
|
for ( it = finite_edges_begin(); it != finite_edges_end(); ++it )
|
|
is_valid_finite((*it).first);
|
|
break;
|
|
}
|
|
}
|
|
if (verbose)
|
|
std::cerr << "Delaunay valid triangulation" << std::endl;
|
|
return true;
|
|
}
|
|
|
|
template < class Gt, class Tds >
|
|
bool
|
|
Delaunay_triangulation_3<Gt,Tds>::
|
|
is_valid(Cell_handle c, bool verbose, int level) const
|
|
{
|
|
if ( ! Tr_Base::is_valid(c,verbose,level) ) {
|
|
if (verbose) {
|
|
std::cerr << "combinatorically invalid cell" ;
|
|
for (int i=0; i <= dimension(); i++ )
|
|
std::cerr << c->vertex(i)->point() << ", " ;
|
|
std::cerr << std::endl;
|
|
}
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
switch ( dimension() ) {
|
|
case 3:
|
|
{
|
|
if ( ! is_infinite(c) ) {
|
|
is_valid_finite(c,verbose,level);
|
|
for (int i=0; i<4; i++ ) {
|
|
if (side_of_sphere(c, c->vertex((c->neighbor(i))->index(c))->point())
|
|
== ON_BOUNDED_SIDE ) {
|
|
if (verbose)
|
|
std::cerr << "non-empty sphere " << std::endl;
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case 2:
|
|
{
|
|
if ( ! is_infinite(c,3) ) {
|
|
for (int i=0; i<2; i++ ) {
|
|
if (side_of_circle(c, 3, c->vertex(c->neighbor(i)->index(c))->point())
|
|
== ON_BOUNDED_SIDE ) {
|
|
if (verbose)
|
|
std::cerr << "non-empty circle " << std::endl;
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if (verbose)
|
|
std::cerr << "Delaunay valid cell" << std::endl;
|
|
return true;
|
|
}
|
|
|
|
#ifndef CGAL_CFG_NET2003_MATCHING_BUG
|
|
template < class Gt, class Tds >
|
|
void
|
|
Delaunay_triangulation_3<Gt,Tds>::
|
|
make_hole_3D_ear( Vertex_handle v,
|
|
std::vector<Facet> & boundhole,
|
|
std::vector<Cell_handle> & hole)
|
|
{
|
|
CGAL_triangulation_expensive_precondition( ! test_dim_down(v) );
|
|
|
|
incident_cells(v, std::back_inserter(hole));
|
|
|
|
for (typename std::vector<Cell_handle>::iterator cit = hole.begin();
|
|
cit != hole.end(); ++cit) {
|
|
int indv = (*cit)->index(v);
|
|
Cell_handle opp_cit = (*cit)->neighbor( indv );
|
|
boundhole.push_back(Facet( opp_cit, opp_cit->index(*cit)) );
|
|
|
|
for (int i=0; i<4; i++)
|
|
if ( i != indv )
|
|
(*cit)->vertex(i)->set_cell(opp_cit);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
template < class Gt, class Tds >
|
|
void
|
|
Delaunay_triangulation_3<Gt,Tds>::
|
|
make_hole_3D_new( Vertex_handle v,
|
|
std::map<Vertex_triple,Facet>& outer_map,
|
|
std::vector<Cell_handle> & hole)
|
|
{
|
|
CGAL_triangulation_expensive_precondition( ! test_dim_down(v) );
|
|
|
|
incident_cells(v, std::back_inserter(hole));
|
|
|
|
for (typename std::vector<Cell_handle>::iterator cit = hole.begin();
|
|
cit != hole.end(); ++cit) {
|
|
int indv = (*cit)->index(v);
|
|
Cell_handle opp_cit = (*cit)->neighbor( indv );
|
|
Facet f(opp_cit, opp_cit->index(*cit));
|
|
Vertex_triple vt = make_vertex_triple(f);
|
|
make_canonical(vt);
|
|
outer_map[vt] = f;
|
|
for (int i=0; i<4; i++)
|
|
if ( i != indv )
|
|
(*cit)->vertex(i)->set_cell(opp_cit);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
template < class Gt, class Tds >
|
|
void
|
|
Delaunay_triangulation_3<Gt,Tds>::
|
|
fill_hole_3D_ear(const std::vector<Facet> & boundhole)
|
|
{
|
|
typedef Delaunay_remove_tds_3_2<Delaunay_triangulation_3> Surface;
|
|
typedef typename Surface::Face_3_2 Face_3_2;
|
|
typedef typename Surface::Face_handle_3_2 Face_handle_3_2;
|
|
typedef typename Surface::Vertex_handle_3_2 Vertex_handle_3_2;
|
|
|
|
Surface surface(boundhole);
|
|
|
|
Face_handle_3_2 f = surface.faces_begin();
|
|
Face_handle_3_2 last_op = f; // This is where the last ear was inserted
|
|
|
|
int k = -1;
|
|
|
|
// This is a loop over the halfedges of the surface of the hole
|
|
// As edges are not explicitely there, we loop over the faces instead,
|
|
// and an index.
|
|
// The current face is f, the current index is k = -1, 0, 1, 2
|
|
for(;;) {
|
|
next_edge: ;
|
|
k++;
|
|
if(k == 3) {
|
|
// The faces form a circular list. With f->n() we go to the next face.
|
|
f = f->n();
|
|
CGAL_assertion_msg(f != last_op, "Unable to find an ear");
|
|
k = 0;
|
|
}
|
|
|
|
// The edges are marked, if they are a candidate for an ear.
|
|
// This saves time, for example an edge gets not considered
|
|
// from both adjacent faces.
|
|
if (!f->is_halfedge_marked(k))
|
|
continue;
|
|
|
|
Vertex_handle_3_2 w0, w1, w2, w3;
|
|
Vertex_handle v0, v1, v2, v3;
|
|
int i = ccw(k);
|
|
int j = cw(k);
|
|
Face_handle_3_2 n = f->neighbor(k);
|
|
int fi = n->index(f);
|
|
|
|
w1 = f->vertex(i);
|
|
w2 = f->vertex(j);
|
|
|
|
v1 = w1->info();
|
|
v2 = w2->info();
|
|
|
|
if( is_infinite(v1) || is_infinite(v2) ){
|
|
// there will be another ear, so let's ignore this one,
|
|
// because it is complicated to treat
|
|
continue;
|
|
}
|
|
w0 = f->vertex(k);
|
|
w3 = n->vertex(fi);
|
|
|
|
v0 = w0->info();
|
|
v3 = w3->info();
|
|
|
|
if( !is_infinite(v0) && !is_infinite(v3) &&
|
|
orientation(v0->point(), v1->point(),
|
|
v2->point(), v3->point()) != POSITIVE)
|
|
continue;
|
|
|
|
// the two faces form a concavity, in which we might plug a cell
|
|
|
|
// we now look at all vertices that are on the boundary of the hole
|
|
for(typename Surface::Vertex_iterator vit = surface.vertices_begin();
|
|
vit != surface.vertices_end(); ++vit) {
|
|
Vertex_handle v = vit->info();
|
|
if (is_infinite(v) || v == v0 || v == v1 || v == v2 || v == v3)
|
|
continue;
|
|
|
|
if (side_of_sphere(v0,v1,v2,v3, v->point(), true) == ON_BOUNDED_SIDE)
|
|
goto next_edge;
|
|
}
|
|
|
|
// we looked at all vertices
|
|
|
|
Face_handle_3_2 m_i = f->neighbor(i);
|
|
Face_handle_3_2 m_j = f->neighbor(j);
|
|
bool neighbor_i = m_i == n->neighbor(cw(fi));
|
|
bool neighbor_j = m_j == n->neighbor(ccw(fi));
|
|
|
|
// Test if the edge that would get introduced is on the surface
|
|
if ( !neighbor_i && !neighbor_j &&
|
|
surface.is_edge(f->vertex(k), n->vertex(fi)))
|
|
continue;
|
|
|
|
// none of the vertices violates the Delaunay property
|
|
// We are ready to plug a new cell
|
|
|
|
Cell_handle ch = tds().create_cell(v0, v1, v2, v3);
|
|
|
|
// The new cell touches the faces that form the ear
|
|
Facet fac = n->info();
|
|
tds().set_adjacency(ch, 0, fac.first, fac.second);
|
|
fac = f->info();
|
|
tds().set_adjacency(ch, 3, fac.first, fac.second);
|
|
|
|
// It may touch another face,
|
|
// or even two other faces if it is the last cell
|
|
if(neighbor_i) {
|
|
fac = m_i->info();
|
|
tds().set_adjacency(ch, 1, fac.first, fac.second);
|
|
}
|
|
if(neighbor_j) {
|
|
fac = m_j->info();
|
|
tds().set_adjacency(ch, 2, fac.first, fac.second);
|
|
}
|
|
|
|
if( !neighbor_i && !neighbor_j) {
|
|
surface.flip(f,k);
|
|
int fi = n->index(f);
|
|
int ni = f->index(n);
|
|
// The flipped edge is not a concavity
|
|
f->unmark_edge(ni);
|
|
// The adjacent edges may be a concavity
|
|
// that is they are candidates for an ear
|
|
// In the list of faces they get moved behind f
|
|
f->mark_edge(cw(ni), f);
|
|
f->mark_edge(ccw(ni), f);
|
|
n->mark_edge(cw(fi), f);
|
|
n->mark_edge(ccw(fi), f);
|
|
|
|
f->set_info(Facet(ch,2));
|
|
n->set_info(Facet(ch,1));
|
|
} else if (neighbor_i && (! neighbor_j)) {
|
|
surface.remove_degree_3(f->vertex(j), f);
|
|
// all three edges adjacent to f are
|
|
// candidate for an ear
|
|
f->mark_adjacent_edges();
|
|
f->set_info(Facet(ch,2));
|
|
} else if ((! neighbor_i) && neighbor_j) {
|
|
surface.remove_degree_3(f->vertex(i), f);
|
|
f->mark_adjacent_edges();
|
|
f->set_info(Facet(ch,1));
|
|
} else {
|
|
CGAL_assertion(surface.number_of_vertices() == 4);
|
|
// when we leave the function the vertices and faces of the surface
|
|
// are deleted by the destructor
|
|
return;
|
|
}
|
|
|
|
// we successfully inserted a cell
|
|
last_op = f;
|
|
// we have to reconsider all edges incident to f
|
|
k = -1;
|
|
} // for(;;)
|
|
}
|
|
|
|
CGAL_END_NAMESPACE
|
|
|
|
#endif // CGAL_DELAUNAY_TRIANGULATION_3_H
|