cgal/AABB_tree/doc_tex/AABB_tree_ref/AABB_tree.tex

159 lines
7.8 KiB
TeX

% +------------------------------------------------------------------------+
% | Reference manual page: AABB_tree.tex
% +------------------------------------------------------------------------+
% | 21.02.2009 Author
% | Package: Package
% |
\RCSdef{\RCSAABBtreeRev}{$Id: header.tex 40270 2007-09-07 15:29:10Z lsaboret $}
\RCSdefDate{\RCSAABBtreeDate}{$Date: 2007-09-07 17:29:10 +0200 (Ven, 07 sep 2007) $}
% |
\ccRefPageBegin
%%RefPage: end of header, begin of main body
% +------------------------------------------------------------------------+
\begin{ccRefClass}{AABB_tree<Traits>} %% add template arg's if necessary
%% \ccHtmlCrossLink{} %% add further rules for cross referencing links
%% \ccHtmlIndexC[class]{} %% add further index entries
\ccDefinition
The class \ccRefName\ is a static data structure for efficient intersection and distance computations in 3D. It builds a hierarchy of axis-aligned bounding boxes from a set of 3D geometric objects such as triangles, and can receive intersection and distance queries, provided that the corresponding predicates are implemented in the traits class. The template parameter \ccc{Traits} stands for a traits class which must be a model of the concept \ccc{AABBTraits}.
\ccInclude{AABB_tree.h}
\ccTypes
\ccTypedef{typedef Traits::FT FT;}
{Field number type.}
\ccGlue
\ccTypedef{typedef Traits::Point_3 Point;}
{Type of 3D point.}
\ccGlue
\ccTypedef{typedef Traits::Primitive Primitive;}
{Type of input primitive.}
\ccGlue
\ccTypedef{typedef Traits::Bounding_box Bounding_box;}
{Type of bounding box.}
\ccGlue
\ccNestedType{Point_and_primitive}
{A pair composed of a point and a primitive.}
%\ccNestedType{AABB}{some nested types}
\ccCreation
\ccCreationVariable{tree} %% variable name
\ccConstructor{AABB_tree();}{Default constructor.}
\ccConstructor{template < class ConstPrimitiveIterator>
AABB_tree( ConstPrimitiveIterator begin,
ConstPrimitiveIterator beyond);}
{Builds the datastructure. Type \ccc{ConstPrimitiveIterator} can be any const iterator on a container of \ccc{Primitive::Object} such that \ccc{Primitive} has a constructor taking a \ccc{ConstPrimitiveIterator} as argument.}
\ccOperations
\ccMethod{template < class ConstPrimitiveIterator>
bool clear_and_insert(ConstPrimitiveIterator begin,
ConstPrimitiveIterator beyond);}
{Clears the current tree and rebuilds it from scratch. See constructor above for the parameters. Returns \ccc{true} iff the memory allocation is successful. }
\ccMethod{void clear(void);}
{Clears the AABB tree. }
\ccMethod{Bounding_box root_bbox();}
{Returns the root axis-aligned bounding box of the whole tree. }
\ccMethod{size_t size();}
{Returns the number of primitives in the tree. }
\ccMethod{bool empty();}
{Returns \ccc{true} iff tree contains no primitive. }
% INTERSECTION TESTS
\ccHeading{Intersection Tests}
\ccMethod{template <class Query>
bool do_intersect(const Query& query);}
{ Returns \ccc{true} iff the query intersects the input primitives. Type \ccc{Query} must be a type for which \ccc{do_intersect} predicates are defined in the \ccc{Traits}.}
\ccMethod{template <class Query>
size_t number_of_intersections(const Query& query);}
{Returns the number of intersections between the query and the input primitives. Type \ccc{Query} must be a type for which \ccc{do_intersect} predicates are defined in the \ccc{Traits}.}
\ccMethod{template <class Query, class OutputIterator>
OutputIterator
all_intersected_primitives(const Query& query,
OutputIterator out);}
{Outputs to the iterator the list of all intersected primitives. This function does not compute the intersection points and is hence faster than the function \ccc{all_intersections} function below. Type \ccc{Query} must be a type for which \ccc{do_intersect} predicates are defined in the \ccc{Traits}.}
\ccMethod{template <class Query>
bool any_intersected_primitive(const Query& query,
Primitive& primitive);}
{Return \ccc{true} iff the query intersects at least one of the input primitives. In the positive, saves the first encountered primitive to the second parameter. Type \ccc{Query} must be a type for which \ccc{do_intersect} and intersection predicates are defined in the \ccc{Traits}.}
% INTERSECTIONS
\ccHeading{Intersections}
\ccMethod{template <class Query, class OutputIterator>
OutputIterator
all_intersections(const Query& query,
OutputIterator out);}
{Outputs to the iterator the list of all intersections between the query and input data, as objects of type \ccc{Point_and_primitive}. Type \ccc{Query} must be a type for which \ccc{do_intersect} predicates and intersections are defined in the \ccc{Traits}.}
\ccMethod{template <class Query>
bool any_intersection(const Query& query,
Point_and_primitive& point_and_primitive);}
{Returns \ccc{true} iff the query intersects at least one of the input primitives. In the positive, saves the first encountered intersection to the second parameter. Type \ccc{Query} must be a type for which \ccc{do_intersect} predicates and intersections are defined in the \ccc{Traits}.}
% DISTANCE QUERIES
\ccHeading{Distance Queries}
\ccMethod{Point
closest_point(const Point& query,
const Point& hint);}
{Returns the point on all input primitives which is closest to the query. In case of several closest points one arbitrarily chosen point is returned. Parameter \ccc{hint} is assumed to be any point located on the input primitives (the closer \ccc{hint} to \ccc{query}, the faster). Parameter \ccc{hint} can be omitted. If the internal KD-tree data structure has been constructed using function \ccc{construct_search_tree} (see below), it is used to efficiently query the nearest hint point from the query. Otherwise a naive hint point is taken as the first primitive reference point. }
\ccMethod{Primitive
closest_primitive(const Point& query,
const Point& hint);}
{Returns the primitive which realizes the smallest distance between the query point and all input primitives. See \ccc{closest_point} function for the optional \ccc{hint} parameter. }
\ccMethod{Point_and_primitive
closest_point_and_primitive(const Point& query,
const Point& hint);}
{Returns a \ccc{std::pair<Point,Primitive>} which realizes the smallest distance between the query point and all input primitives. See \ccc{closest_point} function for the optional \ccc{hint} parameter. }
\ccMethod{FT
squared_distance(const Point& query,
const Point& hint);}
{Returns the minimum squared distance between the query point and all input primitives. See \ccc{closest_point} function for the optional \ccc{hint} parameter. }
\ccHeading{Accelerating the distance queries}
\ccMethod{void construct_search_tree();}
{ Constructs the internal search KD-tree used to accelerate the distance queries. The points in the search tree are taken from the primitives by calling the member function \ccc{point_on} from the primitive.}
\begin{ccAdvanced}
\ccMethod{template <class ConstPointIterator>
void construct_search_tree(ConstPointIterator begin,
ConstPointIterator beyond);}
{ Constructs the internal search KD-tree used to accelerate the distance queries from a specified point set. Each point from the specified point set must be located on the input primitives. For a triangle surface mesh this point set can be provided as the vertex points or as the triangle centroids.}
\end{ccAdvanced}
\ccSeeAlso
\ccc{AABBTraits}, \\
\ccc{AABBPrimitive}.
\end{ccRefClass}
% +------------------------------------------------------------------------+
%%RefPage: end of main body, begin of footer
\ccRefPageEnd
% EOF
% +------------------------------------------------------------------------+